scholarly journals Numerical analysis of construction of drainage system for precipitation waters

2013 ◽  
Vol 12 (3) ◽  
pp. 091-096
Author(s):  
Piotr Gąska

Progressive implements which make possible advanced geotechnical analysis, induced the author to verify previously accepted engineering solutions of construction of rain waters drainage system with the use of reinforced concrete walls and horizontal geogrids. The quantitative analysis of stress distribution in ground medium around the drainage system was performed in numerical model with the use of finite element method . This analysis confirmed previous – intuitive and qualitative - assumptions of the technical design. The application of reinforced concrete walls, transmission of ground lateral pressure to the soil below and the above drainage system, result in twofold reduction of horizontal components of ground stresses in area between reinforced walls and the drainage. The usage of two layers of geogrid over the drainage system  made possible strain relief of this system (in the middle, the most sensitive zone) in vertical direction of about 75%.

2014 ◽  
Vol 7 (3) ◽  
pp. 498-533
Author(s):  
T. C. Braguim ◽  
T. N. Bittencourt

It is important to evaluate which designing models are safe and appropriate to structural analysis of buildings constructed in Concrete Wall system. In this work it is evaluated, through comparison of maximum normal stress of compression, a simple numerical model, which represents the walls with frame elements, with another much more robust and refined, which represents the walls with shells elements. The designing of the normal stress of compression it is done for both cases, based on NBR 16055, to conclude if the wall thickness initially adopted, it is enough or not.


2021 ◽  
Vol 26 (3) ◽  
pp. 28-43
Author(s):  
A. Bahrami ◽  
O. Nexén ◽  
J. Jonsson

Abstract The purpose of this research is to specify the differences between the performance of cross-laminated timber (CLT) and reinforced concrete (RC) walls. The study is done by using the finite element structural analysis and design software, StruSoft FEM-Design, in order to model, analyse and design a reference building located in the city of Gävle in Sweden. The building is firstly modelled, analysed and designed using RC walls and then the RC walls are replaced with CLT walls. In both buildings, other load-bearing elements such as slabs, beams and columns are made of RC while the roof beams are made of glulam. It is found that employing RC has advantages, especially regarding thickness. The results show that the CLT walls require larger dimensions than their RC counterparts. Meanwhile, it is demonstrated that the slabs, beams and columns made of RC in the building having the CLT walls require more reinforcement or larger thickness than the case of walls made of RC. Moreover, the total weight of the building having the CLT walls is 74% of the building having the RC walls. The lower weight of the building having the CLT walls has great advantages such as having lighter foundation and being cost-effective and also beneficial for the environment.


2019 ◽  
Vol 194 ◽  
pp. 46-65 ◽  
Author(s):  
Kristijan Kolozvari ◽  
Lauren Biscombe ◽  
Farhad Dashti ◽  
Rajesh P. Dhakal ◽  
Aysegul Gogus ◽  
...  

2016 ◽  
Vol 19 (12) ◽  
pp. 1902-1916 ◽  
Author(s):  
Xun Chong ◽  
Linlin Xie ◽  
Xianguo Ye ◽  
Qing Jiang ◽  
Decai Wang

The superimposed reinforced concrete wall in which both the walls and slabs are semi-precast superimposed reinforced concrete components has been widely used to construct high-rise residential buildings in some seismic regions of China. This article aims to investigate the seismic performance and reveal the inherent damage mechanism of this wall. Quasi-static tests of two full-scale superimposed reinforced concrete walls with I-shaped cross sections, consisting of the walls in orthogonal directions and two T-shaped cast-in-place boundary elements, were conducted. Through the test, the behavior of the horizontal joints between the wall panels and the foundation; the behavior of the vertical connections between the wall panels of orthogonal direction; the reliability of the connections between precast and cast-in-place concrete; and the lateral load, deformation, and energy dissipation capacities of the specimens are evaluated. In addition, a refined numerical model based on the multi-spring model was adopted to assess the seismic performance of the superimposed reinforced concrete walls with I-shaped cross sections. The reliability of this model was validated through comparison with the experimental data. This study offers valuable experimental data and numerical model references for future seismic performance assessments of superimposed reinforced concrete wall structures.


2017 ◽  
Vol 22 (1) ◽  
pp. 33
Author(s):  
Jorge L. P. Tamayo ◽  
Armando M. Awruch ◽  
Inácio B. Morsch

ABSTRACTThe objective of this work is to provide a reliable numerical model using the finite element method (FEM) for the dynamic analysis of reinforced concrete (RC) structures. For this purpose, a computer program based on a strain-rate sensitive elasto-plastic theory is developed using 3D brick finite elements. The implicit Newmark scheme with predictor and corrector phases is used for time integration of the nonlinear system of equations. In addition, the steel reinforcement is considered to be smeared and perfectly adhered to concrete and represented by membrane finite elements. Two benchmark examples are analyzed with the present numerical model and results are compared with those obtained by other authors. The present numerical model is able to reproduce the path failure, collapse loads and failure mechanism within an acceptable level of accuracy. Keywords.-Reinforced concrete (RC) structures, Finite element method (FEM). RESUMENEl objetivo de este trabajo es presentar un modelo numérico confiable usando el método de los elementos finitos (MEF) para el análisis dinámico de estructuras de concreto reforzado. Con este propósito, un programa de cómputo basado en la teoría de elasto-plasticidad con sensibilidad a la velocidad de deformación es desarrollado usando elementos finitos tridimensionales. El procedimiento de Newmark es adoptado para la integración en el tiempo del sistema no linear de ecuaciones. Además, se supone que el acero de refuerzo está perfectamente distribuido e adherido al concreto, siendo representado por elementos finitos de membrana. Dos ejemplos son solucionados con el presente modelo numérico y los resultados obtenidos son comparados con los resultados de otros autores. Para todos los casos, la trayectoria de falla, la carga de colapso y el mecanismo de falla son reproducidos con suficiente precisión. Palabras clave.- Estructuras de concreto reforzado, Método de los elementos finitos (MEF).


Sign in / Sign up

Export Citation Format

Share Document