scholarly journals COMPUTER PREDICTION OF TECHNOLOGICAL REGIMES OF RAPID CONE-SHAPED ADSORPTION FILTERS WITH CHEMICAL REGENERATION OF HOMOGENEOUS POROUS LOADS

Author(s):  
Andrii Bomba ◽  
Yurii Klymyuk ◽  
Ihor Prysіazhnіuk

Mathematical models for predicting technological regimes of filtration (water purification from the present impurities), backwashing, chemical regeneration and direct washing of rapid cone-shaped adsorption filters, taking into account the influence of temperature effects on the internal mass transfer kinetics at constant rates of the appropriate regimes, are formulated. Algorithms for numerical-asymptotic approximations of solutions of the corresponding nonlinear singularly perturbed boundary value problems for a model cone-shaped domain bounded by two equipotential surfaces and a flow surface are obtained. The proposed models in the complex allow computer experiments to be conducted to investigate the change of impurity concentrations in the filtration flow and on the surface of the load adsorbent, temperature of the filtration flow, filtration coefficient and active porosity along the filter height due to adsorption and desorption processes, and on their basis, to predict a good use of adsorbents and increase the protective time of rapid cone-shaped adsorption filters with chemical regeneration of homogeneous porous loads.

Author(s):  
Andrii Bomba ◽  
Yurii Klymyuk ◽  
Igor Prysіazhnіuk

In the paper a mathematical model for computer predicting the process of adsorption purification of water from impurities in rapid filters taking into account changes in the temperature of the filtration flow along the height of the filter while observing the constant filtration rate is formulated. Analgorithm for numerically-asymptotic approximation of solution of the corresponding nonlinear singularly perturbed boundary value problem for a model region of a conical shape, bounded two equipotential surfaces and a surface flow, is developed. The proposed model allows through computer experiments to investigate changes in the characteristics of porous loads (filtration coefficients, active porosity), to predict the optimal variants for using adsorbents, and increasing the duration of the filters operation due to the choice of their shape, taking into account the effect on the process of adsorption purification ofwater not only changes in the filtration rate flow along the height of the filter, but also the temperature.


Author(s):  
Yurii Klymiuk ◽  
Andrii Bomba

In the paper a mathematical models of technological modes of filtration with automated removal of part of heat from interface surfaces (water purification from multicomponent impurities), backwashing, chemical regeneration and direct washing of rapid cone-shaped adsorption filters with chemical regeneration of piecewise homogeneous porous loads while maintaining constant velocities of the respective modes is formulated. The proposed models in the complex allow to conduct computer experiments to investigate the change in the concentrations of components of a multicomponent impurity in the filtration stream and on the surface of the loading adsorbent, retained by both physical and chemical adsorption, filtration flow temperature, filtration coefficient, active porosity and pressure along the filter height and on their basis to predict more optimal options for the use of adsorbents of each loading layer and increase the protective time of rapid cone-shaped adsorption filters with automated heat removal from the interface surfaces in filter mode.


Author(s):  
Andrij Bomba ◽  
Jurij Klimjuk

A model of the adsorption purification of water from impurities in rapid multilayer cone-shaped filters with piecewisehomogeneous porous loads with a constant filtration rate taking into account the removal of part of the heat on the surfaces of division of layers is formulated. The proposed model provides an opportunity to conduct computer experiments to study the change in the concentrations of impurities in the filtration flow and adsorbed on the surface of the adsorbent load during physical and chemical adsorption, temperature, characteristics of piecewise-homogeneous porous loads along the filter height and based on their prediction of optimal adsorbent use and increasing the duration of filters.


Author(s):  
Olena Prysiazhniuk ◽  
Igor Prysіazhnіuk ◽  
Alexander Kvartenko

This paper proposes a mathematical model for computer prediction of the process of biological deironing of groundwater in a bioreactor, taking into account the presence of two types of iron bacteria Leptothrix and Gallionella in groundwater while maintaining a constant filtration rate. An algorithm for a numerical-analytical method for solving the corresponding nonlinear boundary value problem for an inhomogeneous system of differential equations in partial derivatives of the first order has been developed. The developed model allows to use computer experiments to predict the change in time on the depth of contact loading of cleaning efficiency, distribution of bacterial biomass values ​​in both filtered water and in filter loading, mass of stationary and mobile matrix structures. Also, the proposed model allows to predict the duration of effective operation of the biological reactor of iron deironing between its washing.


Author(s):  
Elena Makarycheva

The aim of the article is to develop a method for calculating water losses from irrigation channels in determining the permeability of rock in the zone of filtration flow on the basis of the law of infiltration A.N. Kostyakov using the results of studies of free filtration from pits and foundation pits in loess loams. Pressure movement of water in irrigation canals is subject to the laws of two-phase flow, in which – in contrast to the Darcy law for the zone of saturation plays an important role, the volume and its change in time. The filtration rate (VF) increases with increasing rock moisture (θ) along the S-curve, while the pressure gradient (I = dh/dz) decreases. The dependences of these parameters on the pressure are represented by power functions, and their product CDP = VFI does not change in time and can serve as a characteristic of the filtration flow under the channel. When installing paired piezometers near the water chore line in the channel and determining the graph I(t) by the value of the twophase flow constant CDP, it is possible to calculate the filtration rate at a number of times and the water losses during unsteady filtration. Water losses from the channels at equilibrium humidity increases with increasing head according to the formula A.N. Kostyakova, in which the water permeability of rocks is characterized by a steady filtration rate at a head of 1.0 m, and the gradient is the function of pressure. The application of the proposed method of calculating losses in the design of irrigation systems will increase the reliability of the justification of the volume of anti-filtration measures and the forecast of the groundwater level.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 266-274
Author(s):  
Michael C. Goody ◽  
Roger L. Simpson ◽  
Christopher J. Chesnakas

Author(s):  
A.L. Panasyuk ◽  
◽  
E.I. Kuzmina ◽  
L.I. Rozina ◽  
D.R. Letfullina

Sign in / Sign up

Export Citation Format

Share Document