Pemodelan Penggunaaan Energi Turbin Angin Untuk Daerah Manado

Jurnal MIPA ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 188
Author(s):  
Alfrets Septy Wauran

Salah satu renewable energy yang berkembang terutama di Indonesia saat ini adalah turbin angin. Penelitian ini bertujuan membuat suatu pemodelan dan simulasi dari suatu tipe wind turbine dengan menggunakan data real dan kontinyu dari kecepatan angin yang ada di daerah Manado. Dengan hasil yang dibuat maka dapat diprediksi berapa besar daya yang dapat dihasilkan oleh wind turbine tersebut jika diguanakan di daerah Manado. Dengan demikian dapat dilakukan analisa selanjutnya untuk penerapan renewable energy ini dikalkulasi dengan jumlah daya yang diperlukan oleh masyarakat sehingga penggunaannya sangatlah efektif dan efisien. Pemodelan dan simulasi yang akan dilakukan berupa phisycal dan statistical model dengan menggunakan data kecepatan angin dari NASA selama 1 tahun. Software yang akan digunakan untuk pemodelan dan simulasi tersebut adalah Matlab yang dapat menggabungkan input data yang kontinyu dengan physical model. Adapun pembuatan model dan simulasi ini akan dilakukan melalui tahapan-tahapan sebagai berikut: tahapan perancangan sistem yang mencakup perangkat lunak, tahapan pembuatan model yang mencakup pembuatan perangkat lunak, tahapan pengujian sistem yang mencakup pengujian model, perangkat lunak serta simulasi sistem dengan menggunakan data kecepatan anginOne renewable energy that is developing especially in Indonesia today is wind turbines .This study aims to make a modeling and simulation of a type of wind turbine using real and continuous data from wind speeds in the Manado area. With the results made, it can be predicted how much power can be produced by the wind turbine if used in the Manado area. Thus, further analysis can be done for the application of renewable energy, which is calculated by the amount of power needed by the community so that its use is very effective and efficient. Modeling and simulation will be carried out in the form of physical and statistical models using wind speed data from NASA for 1 year. The software that will be used for modeling and simulation is Matlab which can combine continuous input data with physical models. The modeling and simulation will be carried out through the stages as follows: the stage of system design that includes software, the stage of making models that include software creation, the stage of system testing which includes testing of models, software and system simulations using wind speed data 

2019 ◽  
Vol 15 (3) ◽  
pp. 1-12
Author(s):  
Emilian Boboc

Abstract Usually, wind turbine generator’s structures or radio masts are located in wind exposed sites. The paper aims to investigate the wind conditions in the nearby area of Cobadin Commune, Constanta County, Romania at heights of 150-200m above the surface using global reanalysis data sets CFSR, ERA 5, ERA I and MERRA 2. Using the extreme value theory and the physical models of the datasets, the research focuses on the assessment of the maximum values that are expected for the wind speeds, but the wind statistics created can be used for a further wind or energy yield calculation. Without reaching the survival wind speed for wind turbine generators, with mean wind speed values higher than 7 m/s and considering the cut-in and cut-out wind speeds of 3 m/s, respectively 25 m/s, the site can be exploited in more than 90% of the time to generate electricity, thus, the paper is addressed to the investors in the energy of renewable sources. At the same time, the insights of the wind characteristics and the knowledge of the extreme values of the wind speed can be useful, not just for the designers, in the rational assessment of the structural safety of wind turbines, but also those evaluating the insured losses.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
Abdellah Benallal ◽  
◽  
Nawel Cheggaga ◽  

Renewable energy hybrid systems give a good solution in isolated sites, in the Algerian desert; wind and solar potentials are considerably perfect for a combination in a renewable energy hybrid system to satisfy local village electrical load and minimize the storage requirements, which leads to reduce the cost of the installation. For a good sizing, it is essential to know accurately the solar potential of the installation area also wind potential at the same height where wind electric generators will be placed. In this work, we optimize a completely autonomous PV-wind hybrid system and show the techno-economical effects of the height of the wind turbine on the sizing of the hybrid system. We also compare the simulation results obtained from using wind speed measured data at 10 meters and 40 meters of height with the ones obtained from using wind speed extrapolation on HOMER software.


2019 ◽  
Vol 11 (3) ◽  
pp. 665 ◽  
Author(s):  
Lingzhi Wang ◽  
Jun Liu ◽  
Fucai Qian

This study introduces and analyses existing models of wind speed frequency distribution in wind farms, such as the Weibull distribution model, the Rayleigh distribution model, and the lognormal distribution model. Inspired by the shortcomings of these models, we propose a distribution model based on an exponential polynomial, which can describe the actual wind speed frequency distribution. The fitting error of other common distribution models is too large at zero or low wind speeds. The proposed model can solve this problem. The exponential polynomial distribution model can fit multimodal distribution wind speed data as well as unimodal distribution wind speed data. We used the linear-least-squares method to acquire the parameters for the distribution model. Finally, we carried out contrast simulation experiments to validate the effectiveness and advantages of the proposed distribution model.


2019 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Long Wang ◽  
Cheng Chen ◽  
Tongguang Wang ◽  
Weibin Wang

A new simulation method for the aeroelastic response of wind turbines under typhoons is proposed. The mesoscale Weather Research and Forecasting (WRF) model was used to simulate a typhoon’s average wind speed field. The measured power spectrum and inverse Fourier transform method were coupled to simulate the pulsating wind speed field. Based on the modal method and beam theory, the wind turbine model was constructed, and the GH-BLADED commercial software package was used to calculate the aerodynamic load and aeroelastic response. The proposed method was applied to assess aeroelastic response characteristics of a commercial 6 MW offshore wind turbine under different wind speeds and direction variation patterns for the case study of typhoon Hagupit (2008), with a maximal wind speed of 230 km/h. The simulation results show that the typhoon’s average wind speed field and turbulence characteristics simulated by the proposed method are in good agreement with the measured values: Their difference in the main flow direction is only 1.7%. The scope of the wind turbine blade in the typhoon is significantly larger than under normal wind, while that under normal operation is higher than that under shutdown, even at low wind speeds. In addition, an abrupt change in wind direction has a significant impact on wind turbine response characteristics. Under normal operation, a sharp variation of the wind direction by 90 degrees in 6 s increases the wind turbine (WT) vibration scope by 27.9% in comparison with the case of permanent wind direction. In particular, the maximum deflection of the wind tower tip in the incoming flow direction reaches 28.4 m, which significantly exceeds the design standard safety threshold.


2020 ◽  
Vol 12 (18) ◽  
pp. 7818
Author(s):  
Jose Alberto Moleón Baca ◽  
Antonio Jesús Expósito González ◽  
Candido Gutiérrez Montes

This paper presents a numerical and experimental analysis of the patent of a device to be used in vertical-axis wind turbines (VAWTs) under extreme wind conditions. The device consists of two hemispheres interconnected by a set of conveniently implemented variable section ducts through which the wind circulates to the blades. Furthermore, the design of the cross-section of the ducts allows the control of the wind speed inside the device. These ducts are intended to work as diffusers or nozzles, depending on the needs of the installation site. Simulations were performed for the case of high-speed external wind, for which the ducts act as diffusers to reduce wind speed and maintain a well-functioning internal turbine. Four different patent designs were analyzed, focusing on turbine performance and generated power. The results indicate that the patent allows the generation of electric power for a greater range of wind speeds than with a normal wind turbine. The results support that this patent may be a good alternative for wind power generation in geographic areas with extreme weather conditions or with maintained or strong gusty wind. Experimental tests were carried out on the movement of the blades using the available model. Finally, the power curve of the model of this wind turbine was obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chenyang Yuan ◽  
Jing Li ◽  
Jianyun Chen ◽  
Qiang Xu ◽  
Yunfei Xie

The purpose of this paper is to explore the effect of the baseline control system (BCS) on the fragility of large-scale wind turbine when seismic and wind actions are considered simultaneously. The BCS is used to control the power output by regulating rotor speed and blade-pitch angle in real time. In this study, the fragility analysis was performed and compared between two models using different peak ground acceleration, wind speeds, and specified critical levels. The fragility curves with different wind conditions are obtained using the multiple stripe analysis (MSA) method. The calculation results show that the probability of exceedance specified critical level increases as the wind speed increases in model 1 without considering BCS, while does not have an obvious change in the below-rated wind speed range and has a significant decrease in the above-rated wind speed range in model 2 with considering BCS. The comparison depicts that if the BCS is neglected, the fragility of large-scale wind turbine will be underestimated in around the cut-in wind speed range and overestimated in the over-rated wind speed range. It is concluded that the BCS has a great effect on the fragility especially within the operating conditions when the rated wind speed is exceeded, and it should be considered when estimating the fragility of wind turbine subjected to the interaction of seismic and aerodynamic loads.


Author(s):  
M. Salim Azzouz ◽  
Anjolajesu Fagbe ◽  
Zachary Evetts ◽  
Ethan Rosales

The purpose of this research project is to explore the possibility of harvesting the energy of the wind by taking advantage of higher wind speeds. Two active gearbox systems allowing a variable speed at the input shaft and delivering a constant speed at the output shaft are currently being built and tested. The first system consists of an assembly of spur, planetary, and ring gears run and controlled by electrical motors. The second system consists of an assembly of a conical shaft, a wheel, and a set of centrifugal masses. The two gearing systems can act separately as a continuously variable transmission (CVT) between the wind turbine hub and the electricity generator which requires an entry speed corresponding to a frequency of 60 Hz. The two gearing systems are designed using the SolidWorks CAD software for modeling and simulation, and the gearing design theory is used to dimension the required spur, planetary and ring gears for the first proposed system. Betz’s law associated with appropriate and realistic wind turbine efficiency is used to estimate the wind power transferred to the turbine hub. The law is also used to determine the hub angular speed as a function of the wind speed. The kinematic gearing theory is used to establish the different gearing ratios of the planetary system, and the kinematic relationships between the system stages. The forces and torques acting on the first and the second systems are computed using the equilibrium equations. The speed ratios are calculated for the first and second system using the kinematic theory. Ideally, the electrical power consumed by the regulating motor for the first system is minimal so that a maximum percentage of the generated electrical power is supplied to the electricity grid. For the second system the totality of the harvested power is transmitted through the conical/wheel system. For the planetary system, when the wind speed deviates from a certain optimum value, the electrical controls activate a regulating motor to guarantee that the generator input speed remains constant. Currently, a prototype of a more robust planetary gearing system than a previously made one is under construction while a newly constructed conical system is under experimental testing. Running speeds, torques, power transfer and distribution for the two systems will be measured. The generated electrical power is measured using different load resistances and compared to the electrical power consumed by the regulating motor for the planetary system. The torques are measured using a prony brake system while the angular speeds are measured using tachometers. It is expected that the power consumed by the regulating motor for the gearing system will remain a small percentage of the power supplied to the grid for various hub input speeds.


Author(s):  
Ohad Gur ◽  
Aviv Rosen

The optimal aerodynamic design of Horizontal Axis Wind Turbine (HAWT) is investigated. The Blade-element/Momentum model is used for the aerodynamic analysis. In the first part of the paper a simple design method is derived, where the turbine blade is optimized for operation at a specific wind speed. Results of this simple optimization are presented and discussed. Besides being optimized for operation at a specific wind speed, without considering operation at other wind speeds, the simple model is also limited in the choice of design goals (cost functions), design variables and constraints. In the second part of the paper a comprehensive design method that is based on a mixed numerical optimization strategy, is presented. This method can handle almost any combination of: design goal, design variables, and constraints. Results of this method are presented, compared with the results of the simple optimization, and discussed.


Sign in / Sign up

Export Citation Format

Share Document