scholarly journals ANALYSIS OF MAXIMUM DEFORMATION OF HIGH RISE BUILDINGS WITH OUTRIGGER SYSTEM AGAINST WIND LOAD

2020 ◽  
Vol 6 (2) ◽  
pp. 141-149
Author(s):  
Fadli Kurnia ◽  
Resti Nur Arini ◽  
Dwi Ariyani ◽  
Soni

Outrigger structural systems are quite effective using the lateral loads on tall buildings, one of the main benefits of utilization outrigger is that it can reduce deformation and the danger of inter-story drift caused by lateral loads acting on the building. In this case, wind loads will be viewed as a lateral load because the wind load acting on tall buildings can also cause deformation of the building. The implementation of the outrigger system is viewed from different positions to see the deformation that occurs and the placement of the maximum location. The results of the analysis of wind loads reviewed on these buildings have proven that the use of outriggers in buildings can reduce displacement by 19.58%, and inter-storey drifts by 13.24%, which is applied in a position of ½ of the building height. The optimum location of the outrigger installation can also be determined by calculating the analysis of the maximum deflection that occurs on the 40th floor.

2018 ◽  
Vol 33 ◽  
pp. 02001 ◽  
Author(s):  
Bui Thanh Dat ◽  
Alexander Traykov ◽  
Marina Traykova

For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.


2016 ◽  
Vol 857 ◽  
pp. 47-52
Author(s):  
Elsa Alexander Anjana ◽  
R. Renjith ◽  
Binu M. Issac

Structural design of high rise buildings is governed by lateral loads due to wind or earthquake. As the height of building increases, the lateral load resisting system becomes more important than the structural system that resists the gravitational loads. Recently, diagrid structural system are widely used for tall buildings due to its structural efficiency and flexibility in architectural planning. Diagrid structural system is made around the perimeter of building in the form of a triangulated truss system by intersecting the diagonal and horizontal members. Diagonal members in diagrid structural systems can carry gravity loads as well as lateral loads. Lateral loads are resisted by axial action of the diagonals compared to bending of vertical columns in framed tube structure. The structural efficiency of diagrid system also helps in avoiding interior and corner columns, thereby allowing significant flexibility with the floor plan. In this paper, effect of lateral loads on steel diagrid buildings are studied. Square and rectangular buildings of same plan area with diagrid structural system is considered for the study. Diagrid modules extending upto 2,4,6,8 and 12 storeys are evaluated. Static analysis for the gravity loads, wind and earthquake and response spectrum analysis are carried out for these different combinations of plan shape and diagrid modules and performance of all these diagrid models i.e., storey displacement, storey drift and modal time period are evaluated and compared in this study.


Author(s):  
Siddhesh Bisane

Abstract: Structural analysis is the science of determining the effects of different loads on structures. Structural stability and stiffness are a main concern in any high-rise structures. Shear walls are structural members that are mainly responsible for resisting lateral loads predominant on structures. They are mainly responsible to increase the stiffness, reduce story drift and displacement. In order to have a comprehensive understanding about the contribution of shear wall, following research is carried out. This research involves comparing two G+16 structures; one without a shear wall and one with it. The structure has 4 bays of 3m each along X direction and Z direction. In this, we will see how shear wall resists lateral sway and reduces story drift and increases stiffness. As the height increases, the shear wall absorbs more lateral load than the frame. The software to be used for analysis is STAADPro. Keywords: STAADPro, Stiffness, storey displacement, storey drift.


2016 ◽  
Vol 857 ◽  
pp. 225-230 ◽  
Author(s):  
Ann Thomas Jereen ◽  
Soumya Anand ◽  
Binu M. Issac

With the application of modern technologies in Civil Engineering, construction of high rise buildings with irregular plan configuration is increasing very quickly. Multi-story buildings are prone to lateral loads from wind or earthquake, which necessitates the need of seismic studies. Buildings can be designed to reduce these lateral loads by many methods; which is why the action of structural diaphragms have to be studied. Several studies have shown the effect of plan configuration on base shear, displacement and story drift, torsional buckling. The lateral stiffness of the building frame affects the maximum displacement of the structure due to earthquake. Study is done on various plan configuration buildings and the action of structural diaphragm on its performance during earthquake is studied.


2017 ◽  
Vol 17 (08) ◽  
pp. 1750092 ◽  
Author(s):  
M. F. Huang ◽  
Zhibin Tu ◽  
Qiang Li ◽  
Wenjuan Lou ◽  
Q. S. Li

Dynamic wind loads on tall buildings can be decomposed into three components, i.e. two translational components and one torsional component. When one component reaches its maximum, the other two components have low probability to take their maximum values. It is common to use combination coefficients for estimating the mean extremes of linearly combined wind loads. The traditional design practice for determining wind load combinations relies partly on some approximate combination rules and lacks a systematic and reliable method. Based on the high frequency force balance (HFFB) testing results, wind loads can be acquired in terms of time history data, which provides necessary information for the more rigorous determination of combination coefficients by probabilistic methods. In this paper, a 3D copula-based approach is proposed for determining the combination coefficients for three stochastic wind loads associated with a specific exceedance probability and a set of 3D realizable equivalent static wind loads (ESWLs) on tall buildings. Using the measured base moment and torque data by the HFFB wind tunnel test, a case study is presented to illustrate the effectiveness of the proposed framework to determine the dynamic wind load combinations and associated 3D realizable ESWLs on a full-scale 60-story building.


2002 ◽  
Vol 29 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Aftab A Mufti ◽  
Baidar Bakht

Tall buildings, or skyscrapers, are icons of cities, symbols of corporate power, and a mark of national pride. Certain skyscrapers, such as the John Hancock Center and the Sears Tower in Chicago, are also marvels of engineering that have paved the way for ever increasing heights of structural systems. Since the 1960s, a series of new structural systems has been introduced with the objective of achieving economically-competitive and aesthetically-pleasing tall buildings without compromising safety. One of the great structural engineers responsible for the new structural systems was Dr. Fazlur Rahman Khan. This paper provides a biographical sketch of Dr. Khan and discusses some of his innovations pertaining to high-rise buildings. It shows that his contributions led to a new vertical scale for the modern day city.Key words: aesthetics, architecture, innovation, structural system, tall building.


Author(s):  
Bashar Iqbal

Abstract: The requirement of tall building in recent years increase the construction to satisfy the need of human beings. Very tall buildings located in high velocity wind area are highly sensitive therefore calculation and analysis of wind load is very impotent. Due to change in climatic condition the basic wind speed are increases. The main aim of this paper is to introducing the different techniques which is used to reduce the effect of wind load or lateral loads. Keywords: wind analysis, comparative analysis, TMD (tuned mass damper),friction damper, shear wall


Author(s):  
Ahmad Sheikh Abdallah ◽  
Safwan Chahal

The rapid growth of urban population and limited land space have greatly influenced the development of high-rise structures. Lateral loads have an important effect on the design as the building height increases. In order to resist lateral loads, safety and minimum damage should be the prime concern when designing tall buildings. To meet these requirements, the structure should have adequate lateral strength and lateral stiffness and sufficient ductility. Among the various structural systems, shear wall systems or moment resisting frame systems could be a point of choice for designers. Thus, it is important to review and observe the behavior of these systems under seismic effect. This study compared the seismic response of the above structural systems using a case study application at variable seismic zones (Zone 2B, Lebanon Zone, Zone 3, and Zone 4) and at different building stories (Eight and 12-story building). The seismic response is measured in term of time-period, maximum story displacement, maximum story drift, amount of steel and concrete needed. The outcome of this study portrayed that a shear wall system is more efficient in terms of cost and lateral load resistivity regardless of the building height and in the four seismic zones mentioned before.


2014 ◽  
Vol 580-583 ◽  
pp. 2567-2571
Author(s):  
Yi Sun ◽  
Nuan Deng ◽  
Zheng Liang Li

The responses of tall buildings under wind loads in hilly terrain are remarkably different from that in flat terrain. Wind load codes can’t work efficiently or directly to calculate the wind-induced vibration of tall buildings in hilly terrain. Utilizing some wind tunnel test results of wind field in hilly terrain and pressures on tall buildings, the access to response of tall buildings on hilly terrain were provided. Some effects from hill characteristics to building responses were discussed.


2003 ◽  
Vol 7 (3-4) ◽  
pp. 325-332 ◽  
Author(s):  
Antony Wood

Since the World Trade Center Towers collapsed in full view of the watching world (FEMA, 2002), the improved safety of tall buildings has become of prime importance globally (Pearson, 2001). International groups such as the UK-based ‘Safety in Tall Buildings Working Group’ (Roberts, 2002), and Arups High Rise (Wainwright, 2002) which are considering these safety implications have made recommendations for improvement in three general areas: structural systems, especially with respect to progressive collapsefire proofing, to structure and fabricevacuation systems, concentrating specifically on vertical evacuation systems such as elevators and stairs.


Sign in / Sign up

Export Citation Format

Share Document