Transport Properties of B-, P-Doped and Undoped 50 kHz PECVD Microcrystalline Silicon

1989 ◽  
Vol 164 ◽  
Author(s):  
M.A. Hachicha ◽  
Etienne Bustarret

AbstractUndoped 500 nm-thick silicon layers with a crystalline fraction around 95% and an average grain size of 20 nm have been deposited at 350°C by 50 kHz triode PECVD in a H2/SiH4 mixture, in the presence of a magnetic field. Their room temperature (rt) dc conductivity μrt is 0.03 Δ−1cm−1 for a Hall mobility of 0.8 cm 2V−1s−1.The study by SIMS, infrared absorption, grazing angle x-ray diffraction and Raman scattering spectroscopies of the doped samples shows how the crystalline fraction and the grain size drop as the B2H6/SiH4 and PH3/SiH4 volumic ratios increase from 10 ppm to 1%.The rt dc conductivity reaches 2 Δ−1 cm−1 (Hall mobility: 15 cm2V−ls−1) for a solid phase density of 1019 cm−3 boron atoms, and 30 Δ−1cm−1 (Hall mobility: 55 cm2V−ls−1) at the maximum P incorporation of 8 × 1020cm−3.

2010 ◽  
Vol 44-47 ◽  
pp. 4151-4153 ◽  
Author(s):  
Rui Min Jin ◽  
Ding Zhen Li ◽  
Lan Li Chen ◽  
Xiang Ju Han ◽  
Jing Xiao Lu

Amorphous silicon films prepared by PECVD on glass substrate has been crystallized by rapid thermal annealing (RTA) at the same temperature for different time. From X-ray diffraction (XRD) and scanning electronic microscope (SEM), it is found that the grain size is biggest crystallized at 720°C for 8 min, an average grain size of 28nm or so is obtained. The thin film is smoothly and perfect structure.


1990 ◽  
Vol 182 ◽  
Author(s):  
I-W. Wu ◽  
A. Chiang ◽  
M. Fuse ◽  
L. Öveqoglut ◽  
T. Y. Huang

AbstractThe mechanism of silicon ion implantation on the crystallization kinetics and the resulting grain sizes of LPCVD α-Si films have been studied by x-ray diffraction and transmission electron microscopy. The solid-phase crystallization was proceeded by random nucleation and growth from the Si/SiO2 interface. The most effective grain size enhancement was found by targeting the peak concentration of implanted siliconbeyond the Si/SiO2 interface, such that the maximum kinetic energy transfer occurred at that interface. The average grain size increases from ∼0.16 μm to ∼2.0 μm by a Si + implantation at 92KeV and a dose of 2X1015 cm-2 for 0.1 μm silicon film. X-ray diffraction intensities were analyzed to optimize implanting dose, beam current and energy for different film thickness. Grain size enhancement was achieved by retarding the random nucleation and increasing the nucleation activation barrier from ∼3.9eV to ∼4.9 eV for the implanted sample. The amorphous to crystalline growth activation barrier of ∼3.2 eV was not altered by Si+ implantation. The observed nucleation and growth kinetics change may be due to the chemical effect of the recoiled oxygen atoms from the substrate. The field-effect mobilities for both n- and p-channel TFTs increase by a factor of two with deep silicon implant.


Author(s):  
Ryo Oishi ◽  
Koji ASAKA ◽  
Bolotov Leonid ◽  
Noriyuki Uchida ◽  
Masashi Kurosawa ◽  
...  

Abstract A simple method to form ultra-thin (< 20 nm) semiconductor layers with a higher mobility on a 3D-structured insulating surface is required for next-generation nanoelectronics. We have investigated the solid-phase crystallization of amorphous Ge layers with thicknesses of 10−80 nm on insulators of SiO2 and Si3N4. We found that decreasing the Ge thickness reduces the grain size and increases the grain boundary barrier height, causing the carrier mobility degradation. We examined two methods, known effective to enhance the grain size in the thicker Ge (>100 nm). As a result, a relatively high Hall hole mobility (59 cm2/Vs) has been achieved with a 20-nm-thick polycrystalline Ge layer on Si3N4, which is the highest value among the previously reported works.


2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


Author(s):  
T. Pikula ◽  
T. Szumiata ◽  
K. Siedliska ◽  
V. I. Mitsiuk ◽  
R. Panek ◽  
...  

AbstractIn this work, BiFeO3 powders were synthesized by a sol–gel method. The influence of annealing temperature on the structure and magnetic properties of the samples has been discussed. X-ray diffraction studies showed that the purest phase was formed in the temperature range of 400 °C to 550 °C and the samples annealed at a temperature below 550 °C were of nanocrystalline character. Mössbauer spectroscopy and magnetization measurements were used as complementary methods to investigate the magnetic state of the samples. In particular, the appearance of weak ferromagnetic properties, significant growth of magnetization, and spin-glass-like behavior were observed along with the drop of average grain size. Mössbauer spectra were fitted by the model assuming cycloidal modulation of spins arrangement and properties of the spin cycloid were determined and analyzed. Most importantly, it was proved that the spin cycloid does not disappear even in the case of the samples with a particle size well below the cycloid modulation period λ = 62 nm. Furthermore, the cycloid becomes more anharmonic as the grain size decreases. The possible origination of weak ferromagnetism of the nanocrystalline samples has also been discussed.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2018 ◽  
Vol 283 ◽  
pp. 147-153 ◽  
Author(s):  
Supalak Manotham ◽  
Pichitchai Butnoi ◽  
Pharatree Jaita ◽  
Tawee Tunkasiri

In this work, the properties of lead-free 0.92(Bi0.5Na0.42K0.08)TiO3-0.08(BaNb0.01Ti0.99)O3 or 92BNKT-8BNbT ceramic has been investigated. The sample was fabricated by a solid-state reaction technique. The 92BNKT-8BNbT sample was well sintered and dense with high density value of 5.86 g/cm3. X-Ray diffraction (XRD) patterns showed a single perovskite phase with tetragonal symmetry and no impurity or secondary phases. The microstructure was analysed using a scanning electron microscopy (SEM). Average grain size was measured and calculated based on a mean linear intercept method. The ceramics had a cubic-like grain shape with an average grain size of 0.39 µm. The influence of temperature on the dielectric and ferroelectric properties of the ceramic was investigated. The dielectric curves exhibited broad transition peaks at Td and Tm, which were the characteristics of a diffuse phase transition. The polarization-electric field (P-E) hysteresis loop changed from well-saturated at room temperature (RT) to pinched-type loop at high temperature (HT) and the remanent polarization decreased from 21.25 µC/cm2 (at RT) to 5.96 µC/cm2 (at 150 °C).


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2767 ◽  
Author(s):  
Chenchen Jiang ◽  
Qiuzhi Gao ◽  
Hailian Zhang ◽  
Ziyun Liu ◽  
Huijun Li

Microstructural evolutions of the 4Al alumina-forming austenitic steel after cold rolling with different reductions from 5% to 30% and then annealing were investigated using electron backscattering diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile properties and hardness were also measured. The results show that the average grain size gradually decreases with an increase in the cold-rolling reduction. The low angle grain boundaries (LAGBs) are dominant in the cold-rolled samples, but high angle grain boundaries (HAGBs) form in the annealed samples, indicating that the grains are refined under the action of dislocations. During cold rolling, high-density dislocations are initially introduced in the samples, which contributes to a large number of dislocations remaining after annealing. With the sustaining increase in cold-rolled deformation, the samples exhibit more excellent tensile strength and hardness due to the decrease in grain size and increase in dislocation density, especially for the samples subjected to 30% cold-rolling reduction. The contribution of dislocations on yield strength is more than 60%.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Jafar F. Al-Sharab ◽  
Rajendra Sadangi ◽  
Vijay Shukla ◽  
Bernard Kear

ABSTRACTPolycrystalline Y2O3 is the material of choice for IR windows since it has excellent optical properties in the visible, and near infra-red band. However, current processing methods yield polycrystalline Y2O3 with large grain size (> 100 μm), which limits the hardness and erosion resistance attainable. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize a fine-grained ceramic, one approach is to develop a composite structure, in which one phase inhibits the growth of the other phase during processing. In this study, Y2O3-MgO nanocomposite with various MgO content (20, 50 and 80 mol%) were synthesized using plasma spray method. Extensive characterization techniques including x-ray diffraction, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy Dispersive spectrometry (EDS) were employed to study the synthesized powder as well as the consolidated sample. Transmission Electron Microscopy, as well as EDS chemical mapping, revealed that the consolidated sample have bi-continuous MgO-Y2O3 nanostructure with an average grain size of 200 nm.


2006 ◽  
Vol 514-516 ◽  
pp. 88-92 ◽  
Author(s):  
Sergey K. Poznyak ◽  
Vladislav V. Kharton ◽  
Jorge R. Frade ◽  
Mário G.S. Ferreira

Several alkaline baths based on different complexing agents were examined for iron electroplating. The resultant films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was shown that adherent and smooth iron coatings with uniform microstructure can be obtained using alkaline Fe (II) baths containing pyrophosphate and tartrate ions as complexing agents. The average grain size can be substantially decreased by glycine additions in the pyrophosphate bath. The faradaic efficiency in these electrolytes may achieve up to 40-50%. The tartrate-containing baths are characterized with a higher throwing power and an increased buffer capacity with respect to the pyrophosphate-based electrolytes. The resultant Fe coatings are single-phase, whilst substantial broadening of the XRD peaks indicates nano-scale grain size. The alkaline baths based on EDTA complexes of iron (III) give black dull iron deposits and are characterized by rather low cathodic current efficiencies, especially at low current densities.


Sign in / Sign up

Export Citation Format

Share Document