Isochronal annealing study of Mg-implanted p-type GaN activated by ultra-high-pressure annealing

Author(s):  
Kazufumi Hirukawa ◽  
Kensuke Sumida ◽  
Hideki Sakurai ◽  
Hajime FUJIKURA ◽  
Masahiro Horita ◽  
...  
Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1380
Author(s):  
Kacper Sierakowski ◽  
Rafal Jakiela ◽  
Boleslaw Lucznik ◽  
Pawel Kwiatkowski ◽  
Malgorzata Iwinska ◽  
...  

It is well known that ion implantation is one of the basic tools for semiconductor device fabrication. The implantation process itself damages, however, the crystallographic lattice of the semiconductor. Such damage can be removed by proper post-implantation annealing of the implanted material. Annealing also allows electrical activation of the dopant and creates areas of different electrical types in a semiconductor. However, such thermal treatment is particularly challenging in the case of gallium nitride since it decomposes at relatively low temperature (~800 °C) at atmospheric pressure. In order to remove the implantation damage in a GaN crystal structure, as well as activate the implanted dopants at ultra-high pressure, annealing process is proposed. It will be described in detail in this paper. P-type GaN implanted with magnesium will be briefly discussed. A possibility to analyze diffusion of any dopant in GaN will be proposed and demonstrated on the example of beryllium.


Author(s):  
Kensuke Sumida ◽  
Kazufumi Hirukawa ◽  
Hideki Sakurai ◽  
Kacper Sierakowski ◽  
Masahiro Horita ◽  
...  

Abstract We performed an isothermal annealing study on Mg-implanted GaN at 1300 °C in an ultra-high-pressure (1 GPa) nitrogen ambient. Annealing for more than 30 min resulted in a high acceptor activation ratio and a low compensation ratio that were comparable to those obtained with annealing at 1400 °C for 5 min. We also performed annealing at 1300 °C in a reduced nitrogen pressure of 300 MPa which makes us possible to expand inner diameter of annealing equipment in the future. High electrical activation, similar to one obtained by annealing at 1 GPa, was successfully obtained.


Sign in / Sign up

Export Citation Format

Share Document