DISTRIBUTION AND BIOLOGY OF INVASIVE SPECIES OF BEAN BRUCHID ACANTHOSCELIDES OBTECTUS (INSECTA, COLEOPTERA, BRUCHIDAE)

2021 ◽  
Vol 14 (4) ◽  
pp. 54-76
Author(s):  
V. G. Kaplin

The review of literary sources on ecology, biology, distribution of bean bruchid ( Acanthoscelides obtectus ) and its main food plant - Phaseolus vulgaris in North and South America; Europe, Africa, Asia, Australia and more details in Russia; the influence of abiotic, biotic and anthropogenic factors on the invasive process, phytosanitary condition of common bean crops in Russia is presented. Some aspects of the invader management are shown. The main stages and areas of cultivation of common bean and invasion of bean bruchid from their primary habitat in South America and in the south of North America are traced; the vectors and reasons causing them are considered. In Russia, the economic importance of bean bruchid has increased since the mid-1980s, which coincided with the climate warming; there was an expansion of its distribution in the eastern and north-western directions. At the last decades of the 20th century, it had penetrated in Smolensk and in the south part of the Tver and the Tomsk regions. With the increase in production of beans in Russia, the lack of systemic protection from bean bruchid and further increase of climate warming will contribute to the extension of its range to the north in the European part of Russia and the Urals to 57-58° N. Lat., where the conditions of the summer period are favorable for development of common bean and bean bruchid. To the east, it may spread to Tyva, Buryatia, the Trans-Baikal territory, the Amur region, the Jewish Autonomous region, and the southern part of the Khabarovsk territory. With the introduction of strict internal quarantine and a system of protection of common bean from this pest, which prevents the spread of infected dry bean, on the contrary, it is possible to reduce the distribution range of the bean bruchid, with its disappearance in the Siberian, Ural districts, Bashkortostan and Tatarstan.

1929 ◽  
Vol 20 (2) ◽  
pp. 225-231
Author(s):  
George N. Wolcott

The map of South America shows Peru as a rather long, narrow country, broadening at the north, and presumably tropical in climate judging by its position just south of the Equator, but with high mountains close to the coast. But it does not show the cold ocean current coming from the south—the Humboldt Current—or ar least we are not accustomed to noticing such presumably minor features, even though in the case of Peru, this is equal in importance with the mountains in determining the climate of the country and every factor that the climate may affect.


2020 ◽  
Vol 16 (2) ◽  
pp. 225-331
Author(s):  
A.V. Fateryga ◽  
◽  
M.Yu. Proshchalykin ◽  

New data on 22 species of bees of the family Megachilidae from the North Caucasus and the south of European Russia are reported. Six species are new to Russia: Hoplitis curvipes (Morawitz, 1871), Osmia cinerea Warncke, 1988, O. ligurica Morawitz, 1868, O. cyanoxantha Pérez, 1879, Protosmia glutinosa (Giraud, 1871), and Coelioxys mielbergi Morawitz, 1880. Hoplitis turcestanica (Dalla Torre, 1896), sp. resurr. is treated as a distinct species, not a junior synonym of H. caularis (Morawitz, 1875). Megachile albocristata Smith, 1853 and M. alborufa Friese, 1911 are listed instead of previously recorded M. lefebvrei (Lepeletier de Saint-Fargeau, 1841) and M. pyrenaica (Lepeletier de Saint-Fargeau, 1841), respectively. Fourteen new regional records are reported: seven species are new to the North Caucasus, five ones are new to the south of European Russia, and two species are new to the European part of Russia as a whole. The numbers of megachilid bee species currently known in Russia, the North Caucasus, and the south of European Russia are 217, 130, and 71, respectively. The lectotype of Osmia proxima Morawitz, 1875 is designated.


2009 ◽  
Vol 48 (9) ◽  
pp. 1902-1912 ◽  
Author(s):  
Josefina Moraes Arraut ◽  
Prakki Satyamurty

Abstract December–March climatologies of precipitation and vertically integrated water vapor transport were analyzed and compared to find the main paths by which moisture is fed to high-rainfall regions in the Southern Hemisphere in this season. The southern tropics (20°S–0°) exhibit high rainfall and receive ample moisture from the northern trades, except in the eastern Pacific and the Atlantic Oceans. This interhemispheric flow is particularly important for Amazonian rainfall, establishing the North Atlantic as the main source of moisture for the forest during its main rainy season. In the subtropics the rainfall distribution is very heterogeneous. The meridional average of precipitation between 35° and 25°S is well modulated by the meridional water vapor transport through the 25°S latitude circle, being greater where this transport is from the north and smaller where it is from the south. In South America, to the east of the Andes, the moisture that fuels precipitation between 20° and 30°S comes from both the tropical South and North Atlantic Oceans whereas between 30° and 40°S it comes mostly from the North Atlantic after passing over the Amazonian rain forest. The meridional transport (across 25°S) curve exhibits a double peak over South America and the adjacent Atlantic, which is closely reproduced in the mean rainfall curve. This corresponds to two local maxima in the two-dimensional field of meridional transport: the moisture corridor from Amazonia into the continental subtropics and the moisture flow coming from the southern tropical Atlantic into the subtropical portion of the South Atlantic convergence zone. These two narrow pathways of intense moisture flow could be suitably called “aerial rivers.” Their longitudinal positions are well defined. The yearly deviations from climatology for moisture flow and rainfall correlate well (0.75) for the continental peak but not for the oceanic peak (0.23). The structure of two maxima is produced by the effect of transients in the time scale of days.


2020 ◽  
Author(s):  
Berrocoso Manuel ◽  
Del Valle Arroyo Pablo Emilio ◽  
Colorado Jaramillo David Julián ◽  
Gárate Jorge ◽  
Fernández-Ros Alberto ◽  
...  

<p>The northwest of South America is conformed by the territories of Ecuador, Colombia and Venezuela. Great part of these territories make up the Northern Andes Block (BAN). The tectonic and volcanic activity in the northwest of South America is directly related to the interaction of the South American plate, and the Nazca and Caribbean plates, with the Maracaibo and Panama-Chocó micro plates. The high seismic activity and the high magnitude of the recorded earthquakes make any study necessary to define this complex geodynamic region more precisely. This work presents the velocity models obtained through GNSS-GPS observations obtained in public continuous monitoring stations in the region. The observations of the Magna-eco network (Agustín Codazzi Geographic Institute) are integrated with models already obtained by other authors from the observations of the GEORED network (Colombian Geological Service). The observations have been processed using Bernese software v.52 using the PPP technique; obtaining topocentric time series. To obtain the speeds, a process of filtering and adjustment of the topocentric series has been carried out. Based on this velocity model, regional structures have been defined within the Northern Andes Block through a differentiation process based on the corresponding speeds of the South American, Nazca and Caribbean tectonic plates. Local geodynamic structures within the BAN itself have been established through cluster analysis based on both the direction and the magnitude of each of the vectors obtained. Finally, these structures have been correlated with the most significant geodynamic elements (fractures, faults, subduction processes, etc.) and with the associated seismic activity.</p>


2020 ◽  
Author(s):  
André Bahr ◽  
Stefanie Kaboth-Bahr ◽  
Andrea Jaeschke ◽  
Christiano Chiessi ◽  
Francisco Cruz ◽  
...  

<p>Eastern Brazil belongs to the ecologically most vulnerable regions on Earth due to its extreme intra- and inter-annual variability in precipitation amount. In order to constrain the driving forces behind this strong natural fluctuations we investigated a high-resolution sediment core taken off the Jequitinhonha river mouth in central E Brazil to reconstruct Holocene river run-off and moisture availability in the river’s catchment. Modern day climate in the hinterland of the Jequitinhonha is influenced by the South American Summer Monsoon (SASM), in particular by the manifestation of the South Atlantic Convergence Zone (SACZ) during austral summer. Variations in the position and strength of the SACZ will have immediate impact on the moisture balance over the continent and hence influence sediment and water delivery. Our multi-proxy records, comprising XRF core-scanning, grain size, mineralogical (XRD), as well as organic biomarker analyses indicate abrupt centennial scale variations between dry and wet conditions throughout the past ~5 kyrs. Our results document a gradual weakening of the SASM over the past ~2,7 kyrs driven by changes in the intertropical heat distribution. This long-term trend is superposed by centennial to millennial-scale spatial shifts in moisture distribution that result from migrations of the SACZ. The combination of both processes caused increasingly pronounced aridity spells in eastern South America over the past 2 kyrs. As the spatial fluctuations were triggered by freshwater anomalies in the North Atlantic, we surmise that enhanced meltwater input into the North Atlantic due to future global warming might severely increase the risk for mega-droughts in tropical South America.</p>


Paleobiology ◽  
1991 ◽  
Vol 17 (3) ◽  
pp. 266-280 ◽  
Author(s):  
S. David Webb

When the isthmian land bridge triggered the Great American Interchange, a large majority of land-mammal families crossed reciprocally between North and South America at about 2.5 Ma (i.e., Late Pliocene). Initially land-mammal dynamics proceeded as predicted by equilibrium theory, with roughly equal reciprocal mingling on both continents. Also as predicted, the impact of the interchange faded in North America after about 1 m.y. In South America, contrary to such predictions, the interchange became decidedly unbalanced: during the Pleistocene, groups of North American origin continued to diversify at exponential rates. Whereas only about 10% of North American genera are derived from southern immigrants, more than half of the modern mammalian fauna of South America, measured at the generic level, stems from northern immigrants. In addition, extinctions more severely decimated interchange taxa in North America, where six families were lost, than in South America, where only two immigrant families became extinct.This paper presents a two-phase ecogeographic model to explain the asymmetrical results of the land-mammal interchange. During the humid interglacial phase, the tropics were dominated by rain forests, and the principal biotic movement was from Amazonia to Central America and southern Mexico. During the more arid glacial phase, savanna habitats extended broadly right through tropical latitudes. Because the source area in the temperate north was six times as large as that in the south, immigrants from the north outnumbered those from the south. One prediction of this hypothesis is that immigrants from the north generally should reach higher latitudes in South America than the opposing contingent of land-mammal taxa in North America. Another prediction is that successful interchange families from the north should experience much of their phylogenetic diversification in low latitudes of North America before the interchange. Insofar as these predictions can be tested, they appear to be upheld.


Antiquity ◽  
1960 ◽  
Vol 34 (135) ◽  
pp. 191-200 ◽  
Author(s):  
Werner Krämer

Only a few decades after the conquest of Gaul by Caesar the power of the free Celtic tribes in central Europe collapsed as a consequence of their finding themselves placed, during the course of the 1st century B.C., in an insecure position between the Romans and the Germans pressing down from the North. The victorious Alpine campaign of Drusus and Tiberius in 15 B.C. sealed the fate of, among others, the Vindelicians who occupied the south German area north of the Alps as far as the Danube. Here, still today, mighty hillforts bear witness to the power of those nameless Celtic chieftains who caused them to be erected. Contemporary literary sources tell all too little about the history of this area and about the cultural connections of its inhabitants before the Roman occupation. Therefore modern research relied upon Caesar’s description of the Gallic tribes in drawing parallels between the large late La Tène hillforts in central Europe and the city-like tribal centres of the Gauls in France, which Caesar called ‘oppida’ or even ‘urbes’.


1999 ◽  
Vol 80 (3) ◽  
pp. 197-200
Author(s):  
E. A. Sirotkin

As many as 52 families having patients with mucoviscidosis (2 : 100000 inhabitants) live in the Saratov region. The molecular and genetic examination was performed in 38 children. 52,6% of chromosomes in patients with mucoviscidosis carry the mutation del F508, 47,4% of chromosomes carry other mutations. 28,9% of them have homoxygotes, 47,4% have homozygomes by the mutation del F508, and 23,7% of patients with both rare or unknown mutations. The mixed mucoviscidosis form is revealed in 92,1% of children, the pulmonary one is revealed in 5,3% of children and the enteric one is revealed in 2,6% of children. It is shown that the incidence of mucoviscidosis corresponds to the assumed incidence for the European part of Russia: the level of chromosomes carrying the mutation del F508 is lower than in the countries of west Europe but higher than in the south of Europe and in the north-west of Russia.


1915 ◽  
Vol 9 ◽  
pp. 95-109
Author(s):  
F. A. Kirkpatrick

An official account of the Indies states that in 1574 there were 200 Spanish settlements or towns (pueblos de Españoles) in Spanish America, some of them ranking as cities, others as villas (i.e. boroughs or towns); 100 of these were in South America. Here is an extract from the book:—‘The city of Popayan is 22 leagues from the city of Cali, which bounds it on the North; and 20 leagues from Almaguer, which bounds it to the South. It has 30 Spanish householders (vecinos), of whom 16 are encomenderos. Its district contains 32 villages or divisions of Indians, with 9000 tributary Indians, divided into 19 repartimientos, 3 of them tributary to the king, the rest to individuals.’


Sign in / Sign up

Export Citation Format

Share Document