scholarly journals Influence of Materials in Life Cycle Energy Assessment of a Six Storey Building

Life Cycle Energy Assessment (LCEA) is one of the evaluating tools for assessing environmental impact of various types of materials used in the buildings components. The LCEA is based on reduction of total amount of energy consumed during the life cycle of building. Operational phase has been taken and the energy consumed for the phase has been evaluated in this study for three cases with respect to change in materials. This mainly focuses on the change in the energy consumption due to the usage of RCC and Wood materials in various building component such as roofs and infill walls etc. under Indian conditions. A six storey building with a plan dimension of 48m x 24m is considered. The ‘eQuest’ is the quick energy simulation tool which is widely used to calculate the whole building’s energy performance. This tool is used to estimate the energy consumption in month wise on various aspects.

2019 ◽  
Vol 8 (1) ◽  
pp. 81-84
Author(s):  
C. Sivapragasam . ◽  
PL. Meyyappan . ◽  
Rithu Christy . ◽  
V. Akila Reddy ◽  
S. Karthiga

Life Cycle Energy Assessment (LCEA) of buildings is commonly being adopted as a tool to evaluate the environmental effects of a building throughout its entire life cycle to enhance the building sustainability. The different phases in the LCEA of a building involve the extraction & manufacturing of building materials, construction, operation, maintenance and demolishing. It measures all inputs to a building and all outputs (emissions) released to the environment in all the phases. This study particularly focuses on the ‘operational’ phase of the LCEA and recommends what materials changes in some of the building components under Indian conditions can lead to lower energy consumption. The case study considered is a single storey building with a plan dimension of 10m x 7m. eQuest software is used for energy simulation. An attempt is also made to study the influence of environmental impacts of the building key assembly components such as roofs and infill walls etc. It is strongly recommended that all structural designs should consider LCEA before it is approved.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


2020 ◽  
Vol 12 (1) ◽  
pp. 351 ◽  
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Ehsan Sharifi ◽  
Ali Soltani

Residential buildings are responsible for a considerable portion of energy consumption and greenhouse gas emissions worldwide. Correspondingly, many attempts have been made across the world to minimize energy consumption in this sector via regulations and building codes. The focus of these regulations has mainly been on reducing operational energy use, whereas the impacts of buildings’ embodied energy are frequently excluded. In recent years, there has been a growing interest in analyzing the energy performance of buildings via a life cycle energy assessment (LCEA) approach. The increasing amount of research has however caused the issue of a variation in results presented by LCEA studies, in which apparently similar case studies exhibited different results. This paper aims to identify the main sources of variation in LCEA studies by critically analyzing 26 studies representing 86 cases in 12 countries. The findings indicate that the current trend of LCEA application in residential buildings suffers from significant inaccuracy accruing from incomplete definitions of the system boundary, in tandem with the lack of consensus on measurements of operational and embodied energies. The findings call for a comprehensive framework through which system boundary definition for calculations of embodied and operational energies can be standardized.


2021 ◽  
Author(s):  
Mohammad Adnan Naeem.

This project analyses the energy consumption of 44 Gerrard St. East. This site is primarily used as the Ryerson University Theatre School and it consists of four classrooms, seventeen offices, six studios, and two theatre auditoriums. Since it is a three-storey building, plus a basement, thus, the energy level for this building is supposed to be moderate. However, because it is an old structure, constructed back in the early 1940s, this building seemingly has considerable energy consumption. The main objective of this energy assessment is to reduce the building load. This goal can be achieved by simplifying and controlling certain parameters that directly and indirectly involve energy consumption. For example, indoor temperature and relative humidity can be maintained at low level in winter and at high level in summer. In addition, monitoring heat loss, heat gain, infiltrations through the building surrounds, and the level of illumination for various types of lights helps to reduce overall energy consumption. Several other factors such as operating costs, maintenance costs, and repair costs influence the energy management of the site. With the help of energy management software, eQUEST, the structure, outlook of all the walls, windows, roof and the type of HVAC system can be developed for analysis. Through eQUEST, various tasks such as heat transfer involvement, energy consumption load calculations and load balancing in comparison with energy saving guidelines will be discussed in detail.


2019 ◽  
Vol 11 (18) ◽  
pp. 4946 ◽  
Author(s):  
Antonio Galiano-Garrigós ◽  
Ángel González-Avilés ◽  
Carlos Rizo-Maestre ◽  
MªDolores Andújar-Montoya

The restoration of historical buildings often implies a change in the main use of the building so that it can once again become a part of people’s lives. Among the interventions needed to adapt the buildings to their new purpose, improving the energy performance is always a challenge due to their particular construction solutions and the influence that these improvements can have on their protected elements. The regulations in force in European Union (EU) member states leave a gap in how the energy performance evaluations in these types of buildings can be defined, and even exclude them from the process. However, rehabilitation of buildings is always seen as an opportunity, because it allows the building to once again be useful to society and play an important role in people’s lives. At the same time, it can also improve their performance and allow benefits to be gained from their use through a reduction in maintenance costs. In the rehabilitation process, the economic viability of the renovation plays a fundamental role which must be compared, in the case of protected buildings, to its impact on the architecture of the building. Since 2002, the EU has issued directives with the aim that countries should define objective methods to improve the energy performance of buildings and, in recent times, methods that demonstrate the amortization of such improvements. Within the process of implementing the new methodologies adapted to the EPBD, Spain was one of the last EU countries to define a process for the energy assessment of existing buildings, introducing an analysis of the economic viability of the construction improvements suggested in the process. The objective of this research was to describe the decision-making process during the evaluation of the feasibility of introducing construction improvements to the energy performance of two catalogued historic buildings located in a warm climate. The estimated energy consumption was evaluated, the net present value (NPV) and the payback period of the investment calculated, and the results obtained were compared with the real energy consumption. At the end of the process, it can be said that the methodologies adopted in Spain offer results that can lead designers to make wrong decisions that may affect the protected heritage values of these buildings.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Toufic Zaraket ◽  
Bernard Yannou ◽  
Yann Leroy ◽  
Stéphanie Minel ◽  
Emilie Chapotot

Occupants' behavior exerts a significant influence on the energy performance of residential buildings. Industrial energy simulation tools often account for occupants' as monolithic elements with standard averaged energy consumption profiles. Predictions yielded by these tools can thus deviate dramatically from reality. This paper proposes an activity-based model for forecasting energy and water consumption of households and discusses how such an occupant-focused model may integrate a user-focused design of residential buildings. A literature review is first presented followed by a brief recall of the proposed modeling methodology and a sample of simulation results. The possible integration of the proposed model into the design and energy management processes of residential buildings is then demonstrated through a number of use cases.


2021 ◽  
Author(s):  
Mohammad Adnan Naeem

This project analyses the energy consumption of 44 Gerrard St. East. This site is primarily used as the Ryerson University Theatre School and it consists of four classrooms, seventeen offices, six studios, and two theatre auditoriums. Since it is a three-storey building, plus a basement, thus, the energy level for this building is supposed to be moderate. However, because it is an old structure, constructed back in the early 1940s, this building seemingly has considerable energy consumption. The main objective of this energy assessment is to reduce the building load. This goal can be achieved by simplifying and controlling certain parameters that directly and indirectly involve energy consumption. For example, indoor temperature and relative humidity can be maintained at low level in winter and at high level in summer. In addition, monitoring heat loss, heat gain, infiltrations through the building surrounds, and the level of illumination for various types of lights helps to reduce overall energy consumption. Several other factors such as operating costs, maintenance costs, and repair costs influence the energy management of the site. With the help of energy management software, eQUEST, the structure, outlook of all the walls, windows, roof and the type of HVAC system can be developed for analysis. Through eQUEST, various tasks such as heat transfer involvement, energy consumption load calculations and load balancing in comparison with energy saving guidelines will be discussed in detail.


2021 ◽  
Author(s):  
Moe Otsubo

The energy performance gap between the predicted and actual energy consumption of 3 LEED for Homes certified buildings were investigated. The actual energy consumptions of the homes were found to be 23 to 77% higher than the initial energy consumption predictions made during the design stage. Revisions to the HOT2000 models to account for changes made between the design and occupancy phase of the buildings helped reduce the gap (9 to 40%). The sources of the discrepancies were found to be related to the energy modeling program’s limitations, inconsistency between the energy model and the actual building, and additional loads in the homes. The HOT2000 program, which is used for obtaining the EnerGuide rating for LEED certified homes, was compared against a dynamic energy simulation program to assess the applicability of the use of the former for energy efficient homes. The use of EnergyPlus not only allowed for a more accurate representation of the actual homes in the energy models, but an increase in the EnerGuide rating for the home was seen, which in turn equates to additional points for the home under the “Energy & Atmosphere” category for the LEED for Homes certification process


2021 ◽  
Vol 2069 (1) ◽  
pp. 012074
Author(s):  
Kalle Kuusk ◽  
Kristel Kullerkupp ◽  
Peep Pihelo ◽  
Michiel Ritzen ◽  
Ana Tisov ◽  
...  

Abstract Deep energy renovation includes the realisation of the full potential of energy performance. A circular deep renovation, which contributes to a circular built environment, is based on 100% life cycle renewable energy, and all materials used within the system boundaries are part of infinite technical or biological cycles with the lowest quality loss as possible. In the current study, the circularity potential was assessed for deep energy renovation from different aspects: circularity of materials, building component and building structure. Careful selection of materials as well as connection, position and disassembly possibilities are needed to increase the degree of circularity. This shows a good possibility to increase energy performance by using circularity principles. The window glass circularity analyse showed that, at best, the thermal transmittance of a new circular product can be more than three times lower than the original. The circular use of materials, components, and structures pose new challenges for the building physic design of building envelope structures.


Author(s):  
Mingsheng Liu ◽  
Jinrong Wang

Abstract The overlap coupled control unit is widely used in hotels, dormitory buildings, hospitals, and office buildings. Energy simulation models are developed to assess changes in energy consumption and humidity levels due to changes in various system parameters. The simulation results show that the energy consumption of the overlap unit is 3 to 5 times higher than the optimal energy consumption. To improve the energy performance, the following measures are recommended: (1) use the variable air volume technique; (2) balance total airflow based on actual peak load; and (3) replace overlap with humidistat. Quick open valves are also found to improve relative humidity control.


Sign in / Sign up

Export Citation Format

Share Document