scholarly journals Renewable Energy based Green Power Generation for Rural Electrification

A major challenge for developing countries is access to electricity in rural area for accelerating its growth. There are significant impediment from the utilities to extend either improved service to the rural user or provide extended hours of supply through conventional grid supply. In developing countries, the most significant challenges are technologies used to upgrade and methods for electrification, which results in poor reliability of supply and high distribution losses, leading to hindering both economic and social development, so energy planners have suggested a hybrid energy system for the electrification of rural areas. This study investigates green energy based integrated generation for rural loads. This proposed system can orchestrate with the grid as well as with the renewable energy-based generator. The wind energy has a natural variance, to satisfy the energy demand during the nocturnal and overcast period a complementary renewable energy generator is critical, or an energy storage mechanism is needed to meet the energy demand. This type of pooled exploitation and interconnection is used to improve the reliability and resilience of the grids. The integration of distributed and clean energy resource like wind generation will reduce fossil fuel emissions and provides electricity in areas which are limitedly served by unified electrical infrastructure. Hence, it is expected to develop/modify technologies available for harnessing renewable energy sources. A MATLAB/Simulink is used to build a model for a grid-wind based integrated generation. Results obtained from MATLAB/Simulink are a close match with a practical system.

2019 ◽  
Vol 5 (7) ◽  
pp. 5
Author(s):  
Satyam Kumar Prasun ◽  
Sanjeev Jararia

The demand for electricity power is increasing day by day, which cannot be met  with  the satisfied  level without  non-renewable energy  resource. Renewable  energy sources  such as wind,  solar are universal and  ecological. These renewable energy  sources are best options to fulfill the world energy demand, but unpredictable due to natural conditions. The use of the hybrid solar and wind renewable energy system like will be the best option forthe utilization  these  available  resources.  The  objective  of  this  paper  is  to  study  the various aspects of hybrid solar and wind system. The application and different theories related to the development of hybrid also discussed in this paper.


2020 ◽  
Vol 167 ◽  
pp. 03001
Author(s):  
Shiplu Sarker ◽  
Goneta Pecani ◽  
Dejon Vula ◽  
Alemayehu Gebremedhin

Prizren is a city located in the south part of Kosovo with approximately 90,000 inhabitants and land area of 640 km2. The region is covered with distinct geographical features, that favor penetration and deployment of various forms of renewable energy. Particularly, solar, wind and hydro energy potential are considered to be the most available options here. In this study, the potential of these renewable energy sources and their viability for energy production are evaluated using a computational modeling tool. The potential investment opportunities are analyzed based on a 50-year life time project. The results suggest that integrating renewable energy to the existing energy system will enable Prizren region and partly the entire Kosovo for coping with load fluctuations in energy demand. Also, it is expected that the added renewable energy in the existing energy mix will, in a broad perspective, lead to meet the European Union’s target of accelerated renewable energy penetration by the year 2030, and in turn to reduce the greenhouse gas emission to the environment.


Green ◽  
2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Abdeen Mustafa Omer

AbstractSudan is an agricultural country with fertile soil and ample water resources, as well as livestock and forestry resources, and agricultural residues. Energy is one of the key factors in the development of Sudan's national economy. We present an overview of the energy situation in Sudan, with reference to its end uses and its regional distribution. We separate energy sources into two main types: conventional energy (biomass, petroleum products, and electricity) and non-conventional energy (solar power, wind energy, hydro-electric, etc.). Sudan has a relatively high abundance of sunshine and solar radiation, and has moderate biomass, hydro-electric and wind energy resources. Exploiting the available new and renewable energy sources to provide part of the local energy demand, as alternatives to conventional fossil energy, has become a major issue in Sudan's strategic planning of future energy policies. Sudan presents an important case study with respect to renewable energy, as it has a long history of meeting its energy needs by use of renewable sources; Sudan's portfolio is broad and diverse, due in part to the country's wide range of climates and landscapes. Like many African frontrunners in the utilisation of renewable energy, Sudan has a well-defined commitment to continue research, development, and implementation of new technologies. Sustainable low-carbon energy scenarios in the new century emphasize the importance of exploiting the untapped potential of renewable resources. Sudan's rural areas in particular, can benefit from this transition. The increased availability of reliable and efficient energy services will stimulate the development of new alternatives. We conclude that using renewable, environmentally friendly energy must be encouraged, promoted, implemented, and demonstrated by full-scale energy plants or collection devices, in particular for use in remote rural areas.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.


Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.


2007 ◽  
Vol 18 (3-4) ◽  
pp. 373-392
Author(s):  
Felix Amenumey ◽  
Melissa Pawlisch ◽  
Okechukwu Ukaga

The Clean Energy Resource Teams (CERTs) is a project designed to give local citizens and other stakeholders a voice in planning and determining their energy future. In total, there are seven CERTs operating in seven regions across Minnesota, USA. CERTs connect citizens with technical expertise to facilitate planning and implementation of energy conservation and renewable energy projects. These technical resources are helping the teams identify and prioritize the most appropriate and cost-effective opportunities within their regions. This paper will describe one of these energy teams (the Northeast CERT) and its efforts in promoting clean energy production and conservation. A key product of the Northeast CERT is a strategic energy plan that highlights the region's top energy priorities. As part of its project priorities, the Northeast Minnesota CERT is working to set up demonstration projects at every school and community in the region. Toward this goal, the team is currently collaborating with two schools in the region to set up renewable energy projects such as wind and solar, which in turn would help students to understand that renewables and conservation can and should be an integral part of our energy system.


Author(s):  
Uday Khadodra ◽  
Md Habibur Rahaman ◽  
Mohsin Jamil

During this period of rising energy demand, utility companies are at a certain point in time, unable to satisfy the overall requirements of their entire consumer population. During this kind of situation, the system, which is, at a micro-scale, can also refer to a zero-energy building, which can also be very prominent in solving this problem. Another thing is that cries of non-renewable energy sources and most of the utility companies are majorly dependent on that kind of energy source, and it keeps along with issues of global warming. A renewable energy-based power system can solve this issue.  In this paper, the solution to this problem by introducing the microscale installation of a renewable energy source at the residential level has been presented. For that here, the area selected for this project is located in St. John's, Newfoundland and Labrador, CANADA. Newfoundland is an island; hence, the proposed system would be beneficial here. Building this kind of system is the process of designing, selecting, and calculating the energy demand of equipment and, at last, synchronizing it with the grid to make it as zero energy building. This process depends upon a range of variables, including geographical location, load requirement, and solar irradiation. The required demand, system modeling, simulation, and techno-economic analysis are carried out by BEopt, HOEMR, and MATLAB software.


Author(s):  
Haoxiang Wang

In recent days the need for energy resources is dramatically increasing world-wide. Overall 80% of the energy resource is supplied in the form of fuel based energy source and nuclear based energy source. Where fuel based energy resources are very essential in day-to-day life. Fossil fuel is also one among the energy resource and due to the high demand we face shortage in these resources. Providing electricity in rural areas is still a difficult process because of the shortage of energy resources. This issue can be rectified by choosing an alternate to electricity. To achieve this we have integrated many renewable energy sources to form a hybrid-renewable energy source system and this is capable of providing power supply to these areas. We have adopted artificial neural networks (ANN) technique based on machine learning to accomplish this process. For short-term prediction other techniques such as MLP, CNN, RNN and LSTM are used. These values are used as reference value in final execution.


2020 ◽  
Vol 42 (4) ◽  
pp. 93-101
Author(s):  
T.A. Zheliezna ◽  
A.I. Bashtovyi

The aim of the work is to analyze possible ways of decarbonization of the EU heat supply sector. The task of the work is to identify the most promising areas and develop appropriate recommendations for Ukraine. The heat supply sector of the EU and Ukraine needs decarbonization, for which there is a big potential and different areas of implementation of relevant measures. In Europe, such a strategy is set out in the Roadmap for decarbonization of the EU heating sector until 2050, the main provisions of which are in line with objectives of the European Green Deal and the EU Strategy on Heating and Cooling. European experts have developed the concept of a smart energy system, which was taken into account when preparing the Roadmap for decarbonization of the EU heating sector until 2050. A number of carried out studies have shown that a smart energy system with 50% district heating integrated with other parts of the overall energy system is more efficient than a conventional energy system or the one based on decentralized heat supply, in terms of the possibility of using a high share of renewable energy. It is recommended for Ukraine to finalize the Concept of green energy transition until 2050, taking into account European approaches to the development of heating systems and the use of modern biofuels. It is also recommended to expand the current Concept of heat supply of Ukraine to the level of a strategy with an emphasis on the development of district heating systems, wide involvement of renewable energy sources and new technologies.


Sign in / Sign up

Export Citation Format

Share Document