scholarly journals Performance Unified Power Quality Conditioner using Instantaneous Reactive Power Theory

The development use power digital tools presents harmonics in the supply system which develops an issue in the high quality of power supplied. Great Power Quality is quite crucial for our everyday use home appliances in both commercial as well as residential fields. Scientists have actually attempted as well as applied several valuable innovation for eliminating all the voltage and also present relevant harmonic incident troubles which consequently enhances the high quality of power provided to the power system. The focal point of this thesis is the execution of control methods like SRF concept as well as immediate power for the procedure of Unified Power Quality Conditioner (UPQC) which is just one of the current modern technology that consists of both collection and also shunt energetic power filter operating at the very same time as well as thus boosts all the present as well as voltage relevant trouble like voltage sag/swell, flicker, and so on at the exact same time and also assists in decrease of Total Harmonic Distortion. Harmonic materials of the resource current has actually been determined as well as contrasted for the various situations to show the impact of harmonic removal circuit on the harmonic settlement quality of AC-DC power supply feeding to nonlinear tons. Simulation results gotten programs that the efficiency of compensator is located to be far better than without compensator.

2019 ◽  
Vol 4 (9) ◽  
pp. 1-8
Author(s):  
Montaser Abd El Sattar ◽  
Adel A. Elbaset ◽  
Ali H. KasemAlaboudy ◽  
Wessam Arafa Hafez

Wind energy system is lately receiving a lot of attention, because they are cost inexpensive, environmental safe and clean renewable energy source, as compared with nuclear and fossil fuel power generation. The operational characteristics of wind electric turbines has considerable dissatisfaction and stress on the quality of electric power system. Harmonics, variations of voltage and reactive power are most of power quality issues for grid connected with wind turbine. This paper introduces a design and simulation of unified power quality conditioner using a fuzzy controller to improve the power quality for Egyptian power grid connected to Zafarana Egypt wind system. The proposed performance of the unified power quality conditioner system is verified by simulating the model using MATLAB/SIMULINK environment. The simulation results showed that the proposed unified power quality conditioner provide efficient cancellation of both load current  harmonics  and supply voltage sag in addition to compensation of reactive power, and thus making the electrical grid connected wind energy system more efficient by improving the quality of power.


Author(s):  
C.S Boopathi ◽  
Kuppusamy Selvakumar ◽  
Avisek Dutta

In this paper unified power quality conditioner has been used to enhance low voltage ride through capability of grid connected wind conversion system taking Doubly fed induction generator (DFIG). Unified Power quality conditioner (UPQC) device is a combination of series active filter and shunt active filter. This custom power device is mainly used to mitigate power quality issues which is an essential factor today because of wide application of power electronics devices. UPQC is capable to deal with voltage and current imperfection simultaneously. It is installed in the system mainly to improve the power quality i.e. Voltage sag/swell, Harmonics, reactive power compensation etc. at point of common coupling. System is modeled in MATLAB/SIMULINK and results shows utilization of UPQC for the enhancement of LVRT of a DFIG wind system according to Grid code. when fault occurs in the system, it will create voltage dip and series compensator of UPQC injects during this time to prevent disconnection from grid and stay connected to contribute during fault. UPQC is also used for fast restoration of system steady state, power factor improvement, prevent rotor over current.


Author(s):  
M. Jawad Ghorbani ◽  
Hossein Mokhtari

This paper investigates the harmonic distortion and losses in power distribution systems due to the dramatic increase of nonlinear loads. This paper tries to determine the amount of the harmonics generated by nonlinear loads in residential, commercial and office loads in distribution feeders and estimates the energy losses due to these harmonics. Norton equivalent modeling technique has been used to model the nonlinear loads. The presented harmonic Norton equivalent models of the end user appliances are accurately obtained based on the experimental data taken from the laboratory measurements. A 20 kV/400V distribution feeder is simulated to analyze the impact of nonlinear loads on feeder harmonic distortion level and losses. The model follows a “bottom-up” approach, starting from end users appliances Norton equivalent model and then modeling residential, commercial and office loads. Two new indices are introduced by the authors to quantize the effect of each nonlinear appliance on the power quality of a distribution feeder and loads are ranked based on these new defined indices. The simulation results show that harmonic distortion in distribution systems can increase power losses up to 20%.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5812
Author(s):  
Ch. Rami Reddy ◽  
B. Srikanth Goud ◽  
Flah Aymen ◽  
Gundala Srinivasa Rao ◽  
Edson C. Bortoni

An intelligent control strategy is proposed in this paper which suggests the Optimum Power Quality Enhancement (OPQE) of grid-connected hybrid power systems with solar photovoltaic, wind turbines, and battery storage. Unified Power Quality Conditioner with Active and Reactive power (UPQC-PQ) is designed with Atom Search Optimization (ASO) based Fractional-order Proportional Integral Derivative (FOPID) controller in the proposed Hybrid Renewable Energy Sources (HRES) system. The main aim is to regulate voltage while reducing power loss and reducing Total Harmonic Distortion (THD). UPQC-PQ is used to mitigate the Power Quality (PQ) problems such as sag, swell, interruptions, real power, reactive power and THD reductions related to voltage /current by using ASO based FOPID controller. The developed technique is demonstrated in various modes: simultaneous to improve PQ reinforcement and RES power injection, PRES > 0, PRES = 0. The results are then compared to those obtained using previous literature methods such as PI controller, GSA, BBO, GWO, ESA, RFA, and GA and found the proposed approach is efficient. The MATLAB/Simulink work framework is used to create the model.


Circuit World ◽  
2020 ◽  
Vol 47 (1) ◽  
pp. 11-21
Author(s):  
Ananthan Nagarajan ◽  
Sivachandran P. ◽  
Suganyadevi M.V. ◽  
Muthukumar P.

Purpose The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side. Design/methodology/approach The work carried out in the Facts device and power quality issues. Findings Maintaining the quality of electric power is always a challenging task. The effect of power electronics devices leads to improper power quality. The use of FACTS devices is preferably the best approach to treat power-quality-related problems. Usually, all FACTS devices are constructed to operate on the side of either the source side or the load. Originality/value This paper explores a broad comprehensive study of various types of power quality problems and classification of FACTS devices with its recent developments. Furthermore unified power quality conditioner (UPQC) is particularly reviewed to highlight the advantages over other compensating devices. An exhaustive study of literature has been carried out and most significant concepts are presented


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3150 ◽  
Author(s):  
Bin Yang ◽  
Kangli Liu ◽  
Sen Zhang ◽  
Jianfeng Zhao

This paper introduces a novel multi-converter-based unified power quality conditioner (MCB-UPQC). Three optimization methods are proposed based on the traditional UPQC: (1) The shunt converter is substituted with multi-modular parallel converters. Hence, the reactive power and harmonic currents can be increased greatly, which are suitable for low-voltage high-current distribution systems. (2) The series converters consist of three H-bridge inverters, and each of the H-bridge inverters is controlled separately. The control strategy is easier to achieve and can improve the control performance of voltage regulation under unbalanced voltage sag or swell. (3) A three-phase four-leg (3P4L) converter is connected to the common DC bus of the proposed UPQC to connect the renewable energy and energy storage system. The detailed mathematical models of shunt and series converters are analyzed, respectively. A multi-proportional resonant (PR) controller is presented in the voltage regulation and reactive power compensation control algorithms. The simulation results verify the feasibility of the control algorithms. Finally, the experimental platform is established, and the experimental results are presented to verify the validity and superiority of the proposed topology and algorithms.


2012 ◽  
Vol 433-440 ◽  
pp. 6731-6736
Author(s):  
Chandrakant L. Bhattar ◽  
Vilas N. Ghate

This paper presents the new control algorithm for three-phase, four-wire distributing system using unified power quality conditioner (UPQC). The UPQC, a combination of series and shunt active filter (AF) with common dc link, is one of the best solution towards the compensation of voltage sag, swell problems and also compensate voltage flicker/imbalance, reactive power, negative sequence current and maintain zero voltage regulation (ZVR) at the point of common coupling (PCC) on distribution system. The series AF is seen by using a three-phase, three leg voltage source inverter (VSI) and the shunt AF is of a three-phase, four leg voltage source inverter (VSI). The proposed model of the UPQC is developed in the MATLAB/SIMULINK environment and the simulation results prove the power quality improvement in the system.


Sign in / Sign up

Export Citation Format

Share Document