scholarly journals Demand Side Management using Grid-Tied Photovoltaic Energy System

This paper investigates the impact of investments in DSM technologies in Palestinian electricity market in order to solve the problem of supply shortages in electrical network, especially in peak demand periods. Renewable hybrid system, which can explore solar PV source at low cost, is a popular choice for this purpose nowadays, optimal energy management solutions can be obtained with great cost savings and active control performance. This paper analyzes the performance and feasibility of implementation DSM system in Palestinian distribution network, using on-grid PV system and energy management system.

2017 ◽  
Vol 114 (45) ◽  
pp. 11867-11872 ◽  
Author(s):  
Xiaoyuan Li ◽  
Fabian Wagner ◽  
Wei Peng ◽  
Junnan Yang ◽  
Denise L. Mauzerall

Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003–2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth’s Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m2per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20–25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4392
Author(s):  
Jia Zhou ◽  
Hany Abdel-Khalik ◽  
Paul Talbot ◽  
Cristian Rabiti

This manuscript develops a workflow, driven by data analytics algorithms, to support the optimization of the economic performance of an Integrated Energy System. The goal is to determine the optimum mix of capacities from a set of different energy producers (e.g., nuclear, gas, wind and solar). A stochastic-based optimizer is employed, based on Gaussian Process Modeling, which requires numerous samples for its training. Each sample represents a time series describing the demand, load, or other operational and economic profiles for various types of energy producers. These samples are synthetically generated using a reduced order modeling algorithm that reads a limited set of historical data, such as demand and load data from past years. Numerous data analysis methods are employed to construct the reduced order models, including, for example, the Auto Regressive Moving Average, Fourier series decomposition, and the peak detection algorithm. All these algorithms are designed to detrend the data and extract features that can be employed to generate synthetic time histories that preserve the statistical properties of the original limited historical data. The optimization cost function is based on an economic model that assesses the effective cost of energy based on two figures of merit: the specific cash flow stream for each energy producer and the total Net Present Value. An initial guess for the optimal capacities is obtained using the screening curve method. The results of the Gaussian Process model-based optimization are assessed using an exhaustive Monte Carlo search, with the results indicating reasonable optimization results. The workflow has been implemented inside the Idaho National Laboratory’s Risk Analysis and Virtual Environment (RAVEN) framework. The main contribution of this study addresses several challenges in the current optimization methods of the energy portfolios in IES: First, the feasibility of generating the synthetic time series of the periodic peak data; Second, the computational burden of the conventional stochastic optimization of the energy portfolio, associated with the need for repeated executions of system models; Third, the inadequacies of previous studies in terms of the comparisons of the impact of the economic parameters. The proposed workflow can provide a scientifically defendable strategy to support decision-making in the electricity market and to help energy distributors develop a better understanding of the performance of integrated energy systems.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


Author(s):  
Yuvraj Praveen Soni ◽  
Eugene Fernandez

Solar PV systems can be used for powering small microgrids in rural area of developing countries. Generally, a solar power microgrid consists of a PV array, an MPPT, a dc-dc converter and an inverter, particularly as the general loads are A.C in nature. In a PV system, reactive current, unbalancing in currents, and harmonics are generated due to the power electronics-based converters as well as nonlinear loads (computers induction motors etc). Thus, estimation of the harmonics levels measured by the Total Harmonic Distortion (THD) is an essential aspect of performance assessment of a solar powered microgrid. A major issue that needs to be examined is the impact of PV system control parameters on the THD. In this paper, we take up this assessment for a small PV based rural microgrid with varying levels of solar irradiance. A Simulink model has been developed for the study from which the THD at equilibrium conditions is estimated. This data is in turn used to design a generalized Linear Regression Model, which can be used to observe the sensitivity of three control variables on the magnitude of the THD. These variables are: Solar Irradiance levels, Power Factor (PF) of connected load magnitude of the connected load (in kVA) The results obtained show that the greatest sensitivity is obtained for load kVA variation.


Author(s):  
Rashmi Chawla ◽  
Poonam Singhal ◽  
Amit K. Garg

The facile conversion of sunlight into electricity of a solar-energy system is predominantly associated with the sun's irradiance as well as myriad environmental/climatic factors and photoactive material employed. However, the impact of other external factors associated with solar-rich geographical location (India) can be more influential on system performance. Among these, dust is oft-times an overlooked or understated issue that can be a major stumbling block in a solar panel's output performance. This chapter provides an insight of dust's impact on photovoltaic modules and evaluates mitigation of power loss and other performance parameters due to dust accumulation. In addition, this chapter analyzes dust's impact on the real-time data collected for 46 inverters with total 114819.30 kWh productions in a month with an average of 4416.13 kWh/day. The research further reviews key contributions to the understanding and performance effects of dust on solar module and presents an inclusive literature survey/assessment.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5840
Author(s):  
Bat-Erdene Bayandelger ◽  
Yuzuru Ueda ◽  
Amarbayar Adiyabat

There are approximately 200,000 households living in detached houses and gers (yurts) with small coal stoves that burn raw coal in Ulaanbaatar city. A proper heating system and improvement of the energy efficiency of residential dwellings are vitally important for Ulaanbaatar city to reduce air pollution as well as for the operation of the current central energy system. This study shows the experimental results for two gers with two different heating systems and different thermal insulation, for investigating the merits of each. The technical feasibility of the system consisting of an electric thermal storage (ETS) heater with a daytime charging schedule and areal photovoltaic (PV) system was also examined by using a simulation with software developed in MATLAB (R2020a, MathWorks, USA). As a result of the experiment, the indoor comfort level and energy efficiency of the ger with added insulation and an ETS heater with nighttime charging were shown to be enhanced compared with those of the reference ger. The ger with added insulation and the ETS heater consumed 3169 kWh for electric appliances and 5989 kWh for the heating season. The simulation showed that the PV self-consumption rate is 76% for the Ger 2 with the ETS heater because of the daytime charging schedule of the ETS heater. The PV system supplied 31% of the total energy consumed, with the remaining 69% from the main grid.


Author(s):  
K. Agyenim-Boateng ◽  
R. F. Boehm

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources’ transient behavior and the impact this would have on the operation of the grid. One way of addressing this is through the use of supplemental energy storage. While the technology for the latter has not been proven on a large scale or to be economical at the present time, some assessments of what magnitude is required can be made. In performing this work we have used NREL’s Solar Advisor Model (SAM 2010) with TMY3 solar data to estimate the photovoltaic system power generation. Climatic conditions close to load centers were chosen for the simulations. Then the PV output for varying sizes of arrays were examined and the impact of varying amounts of storage investigated. The storage was characterized by maximum limiting energy and power capacities based on annual hourly peak load, as well as its charging and discharging efficiencies. The simulations were performed using hourly time steps with energy withdrawn from, or input to, storage only after considering base generation and the PV system output in serving the grid load. In this work, we examined the load matching capability of solar PV generation (orientated for maximum summer output) for a sample Southwestern US utility grid load of 2008. Specifically we evaluated the daily and seasonal peak load shifting with employing varying storage capacities. The annual average energy penetration based on the usable solar PV output is also examined under these conditions and at different levels of system flexibility.


2018 ◽  
Author(s):  
Ibraheam Al-Aali ◽  
Vijay Modi

Soaring electricity demand from space cooling and excellent solar photovoltaics (PV) resources are creating an opportunity for the financial viability of low-emission solutions in Qatar that can compete with existing approaches. This study examines the big picture viability of combining large utility-scale PV with decentralized building-scale ice storage for cooling in Qatar. Qatar is found to have consistently high repeatable solar radiation intensity that nearly matches space cooling requirement. A means to exploit the low installed costs of PV, combined with low cost and long lifetime of ice storage (as opposed to batteries) are examined to meet space cooling loads. Space cooling is responsible for about 65% of Qatar’s annual electric load (which averaged 4.68 GW in 2016). While multiple gas prices are considered, a scenario with the current gas price of $3.33/MMBTU, a PV system of 9.7 GW capacity and an aggregate ice-storage capacity of 4.5 GWh could reduce the gas-fired power generation in Qatar by nearly 39%. Here, gas-fired generation capacity to meet current load exists and hence is not costed.


2020 ◽  
Vol 181 ◽  
pp. 03002
Author(s):  
Fabien Mukundufite ◽  
Jean Marie Vianney Bikorimana ◽  
Etienne Ntagwirumugara ◽  
Alex Kyaruzi

Many scholars have been focusing on the energy management by Integrating a smart grid into a conventional electrical grid. They have showed that to meet a certain power demand of the consumers, using energy management, the electric utility can turn on some generators, which may have the least operation cost, while the generators with high operation cost are left to supply extra load demand in specific peak periods. Henceforth, the operation cost of its generation units is minimized. The issue remains at a level of relating the energy management to CO2 emission. The present paper briefly discusses the Rwandan electrical network that still integrates the use of diesel generators. It estimates the amount of CO2 emission that can be avoided once a PV system is integrated into the electrical network. The paper as well proposes an algorithm for energy management with consideration of CO2 emission.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1443 ◽  
Author(s):  
Abdullah Alshahrani ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Elamin Mohamed ◽  
Saleh Alotaibi

Decarbonisation, energy security and expanding energy access are the main driving forces behind the worldwide increasing attention in renewable energy. This paper focuses on the solar photovoltaic (PV) technology because, currently, it has the most attention in the energy sector due to the sharp drop in the solar PV system cost, which was one of the main barriers of PV large-scale deployment. Firstly, this paper extensively reviews the technical challenges, potential technical solutions and the research carried out in integrating high shares of small-scale PV systems into the distribution network of the grid in order to give a clearer picture of the impact since most of the PV systems installations were at small scales and connected into the distribution network. The paper reviews the localised technical challenges, grid stability challenges and technical solutions on integrating large-scale PV systems into the transmission network of the grid. In addition, the current practices for managing the variability of large-scale PV systems by the grid operators are discussed. Finally, this paper concludes by summarising the critical technical aspects facing the integration of the PV system depending on their size into the grid, in which it provides a strong point of reference and a useful framework for the researchers planning to exploit this field further on.


Sign in / Sign up

Export Citation Format

Share Document