scholarly journals Functional Connectivity and Classification of Actual and Imaginary Motor Movement

Imaginary Motor movement is an utmost important for the designing of brain computer interface to assist the individual with physically disability. Brain signals associated with actual motor movement include the signal for muscle activity whereas in case of imaginary motor movement actual muscle movement is not present .Authors have investigated the similarity/dissimilarity between the eeg signals generated in both the cases along with the baseline activity. To instruct the brain computer interface signals generated by electrodes of EEG must resemble with actual motor movement. Selection of electrodes placement plays an important role for this purpose. In this study major four regions of the brain has been covered frontal, temporal, parietal and occipital region of the scalp and features are extracted from the signals are standard deviations, kurtosis, skew and mean. Support Vector Machine is used for the classification between actual and imaginary motor movement along with differentiation between baseline and imaginary motor movement and actual motor movement at 14 different electrodes positions. Statistical performances of the classifier have been evaluated by computing sensitivity, specificity and accuracy. The location involved to achieve maximum accuracy for the classification of motor movements (actual and imaginary) and no motor movement is at frontal, temporal and parietal region

2002 ◽  
Vol 41 (04) ◽  
pp. 337-341 ◽  
Author(s):  
F. Cincotti ◽  
D. Mattia ◽  
C. Babiloni ◽  
F. Carducci ◽  
L. Bianchi ◽  
...  

Summary Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes. Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used. Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes. Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.


2013 ◽  
Vol 310 ◽  
pp. 660-664 ◽  
Author(s):  
Zi Guang Li ◽  
Guo Zhong Liu

As an emerging technology, brain-computer interface (BCI) bring us a novel communication channel which translate brain activities into command signals for devices like computer, prosthesis, robots, and so forth. The aim of the brain-computer interface research is to improve the quality life of patients who are suffering from server neuromuscular disease. This paper focus on analyzing the different characteristics of the brainwaves when a subject responses “yes” or “no” to auditory stimulation questions. The experiment using auditory stimuli of form of asking questions is adopted. The extraction of the feature adopted the method of common spatial patterns(CSP) and the classification used support vector machine (SVM) . The classification accuracy of "yes" and "no" answers achieves 80.2%. The experiment result shows the feasibility and effectiveness of this solution and provides a basis for advanced research .


2018 ◽  
Vol 7 (4) ◽  
pp. 2722
Author(s):  
Raymond Sutjiadi ◽  
Timothy John Pattiasina ◽  
Resmana Lim

In this research, a Brain Computer Interface (BCI) based on Steady State Visually Evoked Potential (SSVEP) for computer control applications using Support Vector Machine (SVM) is presented. For many years, people have speculated that electroencephalographic activities or other electrophysiological measures of brain function might provide a new non-muscular channel that can be used for sending messages or commands to the external world. BCI is a fast-growing emergent technology in which researchers aim to build a direct channel between the human brain and the computer. BCI systems provide a new communication channel for disabled people. Among many different types of the BCI systems, the SSVEP based has attracted more attention due to its ease of use and signal processing. SSVEPs are usually detected from the occipital lobe of the brain when the subject is looking at a twinkling light source. In this paper, SVM is used to classify SSVEP based on electroencephalogram data with proper features. Based on the experiment utilizing a 14-channel Electroencephalography (EEG) device, 80 percent of accuracy can be reached by our SSVEP-based BCI system using Linear SVM Kernel as classification engine. 


2020 ◽  
Vol 17 (5) ◽  
pp. 2051-2056
Author(s):  
Kalyana Sundaram Chandran ◽  
T. Kiruba Angeline

A Brain Computer Interface (BCI) is the one which converts the activity of the brain signals into useful and understandable signal. Brain computer interface is also called as Neural-Control Interface (NCI), Direct Neural Interface (DCI) or Brain Interface Machine (BMI). Electroencephalogram (EEG) based brain computer interfaces (BCI) is the technique used to measure the activity of the brain. Electroencephalography (EEG) is a brain wave monitoring and diagnosis. It is the measurement of electrical activity of the brain from the scalp. Taste sensations are important for our body to digest food. Identification of disease symptoms is based on the inhibition of different types of taste and by testing them to find the normality and abnormality of taste. The information is used in detection of disorder such as Parkinson’s disease etc. It is a source of reimbursement for better clinical diagnosis. Our brain continuously produces electrical signals when it operates. Those signals are measured with the equipment called Neurosky Mindwave Mobile headset. It is used to collect the real time brain signal samples. Neurosky is the equipment used in proposed work. Here the pre-processing technique is executed with median filtering. Feature extraction and classification is done with Discrete Wavelet Transform (DWT) and Support Vector Machine (SVM). It increases the performance accuracy. The SVM classification accuracy achieved by this work is 90%. The sensitivity achieved is higher and the specificity is about 80%. We can able to predict the taste disorders using this methodology.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Teng Ma ◽  
Fali Li ◽  
Peiyang Li ◽  
Dezhong Yao ◽  
Yangsong Zhang ◽  
...  

Electroencephalogram signals and the states of subjects are nonstationary. To track changing states effectively, an adaptive calibration framework is proposed for the brain-computer interface (BCI) with the motion-onset visual evoked potential (mVEP) as the control signal. The core of this framework is to update the training set adaptively for classifier training. The updating procedure consists of two operations, that is, adding new samples to the training set and removing old samples from the training set. In the proposed framework, a support vector machine (SVM) and fuzzy C-mean clustering (fCM) are combined to select the reliable samples for the training set from the blocks close to the current blocks to be classified. Because of the complementary information provided by SVM and fCM, they can guarantee the reliability of information fed into classifier training. The removing procedure will aim to remove those old samples recorded a relatively long time before current new blocks. These two operations could yield a new training set, which could be used to calibrate the classifier to track the changing state of the subjects. Experimental results demonstrate that the adaptive calibration framework is effective and efficient and it could improve the performance of online BCI systems.


2020 ◽  
Vol 10 (10) ◽  
pp. 707
Author(s):  
Luisa Velasquez-Martinez ◽  
Julian Caicedo-Acosta ◽  
Carlos Acosta-Medina ◽  
Andres Alvarez-Meza ◽  
German Castellanos-Dominguez

Motor Imagery (MI) promotes motor learning in activities, like developing professional motor skills, sports gestures, and patient rehabilitation. However, up to 30% of users may not develop enough coordination skills after training sessions because of inter and intra-subject variability. Here, we develop a data-driven estimator, termed Deep Regression Network (DRN), which jointly extracts and performs the regression analysis in order to assess the efficiency of the individual brain networks in practicing MI tasks. The proposed double-stage estimator initially learns a pool of deep patterns, extracted from the input data, in order to feed a neural regression model, allowing for infering the distinctiveness between subject assemblies having similar variability. The results, which were obtained on real-world MI data, prove that the DRN estimator fosters pre-training neural desynchronization and initial training synchronization to predict the bi-class accuracy response, thus providing a better understanding of the Brain–Computer Interface inefficiency of subjects.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2989
Author(s):  
Ernest Kamavuako ◽  
Usman Sheikh ◽  
Syed Gilani ◽  
Mohsin Jamil ◽  
Imran Niazi

People suffering from neuromuscular disorders such as locked-in syndrome (LIS) are left in a paralyzed state with preserved awareness and cognition. In this study, it was hypothesized that changes in local hemodynamic activity, due to the activation of Broca’s area during overt/covert speech, can be harnessed to create an intuitive Brain Computer Interface based on Near-Infrared Spectroscopy (NIRS). A 12-channel square template was used to cover inferior frontal gyrus and changes in hemoglobin concentration corresponding to six aloud (overtly) and six silently (covertly) spoken words were collected from eight healthy participants. An unsupervised feature extraction algorithm was implemented with an optimized support vector machine for classification. For all participants, when considering overt and covert classes regardless of words, classification accuracy of 92.88 ± 18.49% was achieved with oxy-hemoglobin (O2Hb) and 95.14 ± 5.39% with deoxy-hemoglobin (HHb) as a chromophore. For a six-active-class problem of overtly spoken words, 88.19 ± 7.12% accuracy was achieved for O2Hb and 78.82 ± 15.76% for HHb. Similarly, for a six-active-class classification of covertly spoken words, 79.17 ± 14.30% accuracy was achieved with O2Hb and 86.81 ± 9.90% with HHb as an absorber. These results indicate that a control paradigm based on covert speech can be reliably implemented into future Brain–Computer Interfaces (BCIs) based on NIRS.


Sign in / Sign up

Export Citation Format

Share Document