scholarly journals Different Techniques used in Stock Market Prediction

The stock market has been one of the primary revenue streams for many for years. The stock market is often incalculable and uncertain; therefore predicting the ups and downs of the stock market is an uphill task even for the financial experts, which they been trying to tackle without any little success. But it is now possible to predict stock markets due to rapid improvement in technology which led to better processing speed and more accurate algorithms. It is necessary to forswear the misconception that prediction of stock market is only meant for people who have expertise in finance; hence an application can be developed to guide the user about the tempo of the stock market and risk associated with it.The prediction of prices in stock market is a complicated task, and there are various techniques that are used to solve the problem, this paper investigates some of these techniques and compares the accuracy of each of the methods. Forecasting the time series data is important topic in many economics, statistics, finance and business. Of the many techniques in forecasting time series data such as the Autoregressive, Moving Average, and the Autoregressive Integrated Moving Average, it is the Autoregressive Integrated Moving Average that has higher accuracy and higher precision than other methods. And with recent advancement in computational power of processors and advancement in knowledge of machine learning techniques and deep learning, new algorithms could be made to tackle the problem of predicting the stock market. This paper investigates one of such machine learning algorithms to forecast time series data such as Long Short Term Memory. It is compared with traditional algorithms such as the ARIMA method, to determine how superior the LSTM is compared to the traditional methods for predicting the stock market.

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2018 ◽  
Vol 2 (2) ◽  
pp. 49-57
Author(s):  
Dwi Yulianti ◽  
I Made Sumertajaya ◽  
Itasia Dina Sulvianti

Generalized space time autoregressive integrated  moving average (GSTARIMA) model is a time series model of multiple variables with spatial and time linkages (space time). GSTARIMA model is an extension of the space time autoregressive integrated moving average (STARIMA) model with the assumption that each location has unique model parameters, thus GSTARIMA model is more flexible than STARIMA model. The purposes of this research are to determine the best model and predict the time series data of rice price on all provincial capitals of Sumatra island using GSTARIMA model. This research used weekly data of rice price on all provincial capitals of Sumatra island from January 2010 to December 2017. The spatial weights used in this research are the inverse distance and queen contiguity. The modeling result shows that the best model is GSTARIMA (1,1,0) with queen contiguity weighted matrix and has the smallest MAPE value of 1.17817 %.


2019 ◽  
Vol 13 (3) ◽  
pp. 135-144
Author(s):  
Sasmita Hayoto ◽  
Yopi Andry Lesnussa ◽  
Henry W. M. Patty ◽  
Ronald John Djami

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.


Prediction and analysis of stock market data have a vital role in current time’s economy. The various methods used for the prediction can be classified into 1) Linear Algorithms like Moving Average (MA) and Auto-Regressive Integrated Moving Average (ARIMA). 2) Non-Linear Models like Artificial Neural Networks and Deep Learning. In this work, we are using the results of previous research papers to demonstrate the potential of some models like ARIMA, Multi-Layer Perception (MLP) ), Convolutional Neural Neural Network (CNN), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), Long-Short Term Memory (LSTM) for forecasting the stock price of an organization based on its available historical data. Then, implementing some of these methods to check and compare their efficiency within the same issue. We used Independently RNN (IndRNN) to explore a better efficiency for stock prediction and we found that it gives better accuracy prevailing methods in the current time. We also proposed an enhancement to IndRNN by replacing its default activation function with a more effective function called Parametric Rectified Linear Unit (PreLU). Our proposed approach can be used as an alternative method for predicting time series data efficiently other than the typical approaches today


2021 ◽  
Author(s):  
Dhairya Vyas

In terms of Machine Learning, the majority of the data can be grouped into four categories: numerical data, category data, time-series data, and text. We use different classifiers for different data properties, such as the Supervised; Unsupervised; and Reinforcement. Each Categorises has classifier we have tested almost all machine learning methods and make analysis among them.


Author(s):  
Steven M. Rock

Instrumentation is one of the threats to the validity of experiments. Four possible cases of instrumentation in a time series of traffic accident statistics in Illinois since the mid-1970s were tested, primarily by using autoregressive integrated moving average methods. Two of these cases, a 1977 change in the reporting threshold for property-damage-only (PDO) accidents and a 1989 change in the definition of a fatality, were not found to be significant. A 1989 change in the method of tabulating monthly data and a 1992 change in the reporting threshold for PDO accidents were statistically significant. These two cases combined could account for a more than 15 percent decline in PDO accidents.


2019 ◽  
Vol 14 ◽  
pp. 155892501988346 ◽  
Author(s):  
Mine Seçkin ◽  
Ahmet Çağdaş Seçkin ◽  
Aysun Coşkun

Although textile production is heavily automation-based, it is viewed as a virgin area with regard to Industry 4.0. When the developments are integrated into the textile sector, efficiency is expected to increase. When data mining and machine learning studies are examined in textile sector, it is seen that there is a lack of data sharing related to production process in enterprises because of commercial concerns and confidentiality. In this study, a method is presented about how to simulate a production process and how to make regression from the time series data with machine learning. The simulation has been prepared for the annual production plan, and the corresponding faults based on the information received from textile glove enterprise and production data have been obtained. Data set has been applied to various machine learning methods within the scope of supervised learning to compare the learning performances. The errors that occur in the production process have been created using random parameters in the simulation. In order to verify the hypothesis that the errors may be forecast, various machine learning algorithms have been trained using data set in the form of time series. The variable showing the number of faulty products could be forecast very successfully. When forecasting the faulty product parameter, the random forest algorithm has demonstrated the highest success. As these error values have given high accuracy even in a simulation that works with uniformly distributed random parameters, highly accurate forecasts can be made in real-life applications as well.


Sign in / Sign up

Export Citation Format

Share Document