scholarly journals Techno-Economic Analysis and Performance Evaluation of 25 MW Solar PV Power Plant in Actual Environmental Condition in India

This paper presents study, identification and evaluation of causes and impact of various degradation modes and environmental conditions on performance of a utility scale grid connected solar PV plant located in remote location in India. Degradation of solar PV modules results in considerable loss in energy yield of overall estimated plant generation. The research includes degradation analysis of 25 MW Roha Dyechem amorphous Si solar PV plant, Charanka, Patan, Gujarat under varying climatic conditions. Some of the well qualified modules were found to degrade in outdoor exposure for more than 7 years. Glass breakage, hot spots, backsheet puncture, micro-delamination, corrosion of cell edges, snail trails, Digital Process Control Board (DPCB) failure, moisture ingression, soiling losses etc. were among the main faults observed in fielded PV modules. A comparative analysis is presented between the simulated, computed and practically measured and recorded field data for drawing important conclusions.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Cristina Cornaro ◽  
Davide Musella

The paper deals with an extensive photovoltaic (PV) modules monitoring activity carried out at the outdoor station ESTER (Solar Energy TEst and Research) of the University of Rome Tor Vergata, Italy. The purpose of the work was to evaluate and compare the performance of PV silicon modules of polycrystalline (poli-Si) and amorphous (a-Si) technologies during a medium-term outdoor exposure at optimized tilt angle, facing south. Two PV modules, one polycrystalline silicon and one double-junction amorphous silicon, have been exposed since May 2009 until Oct. 2010. A complete characterization of the weather conditions at the site during the test has been performed, and the most relevant parameters for the performance comparison of the two technologies have been derived. In order to compare different technologies and power productions, the energy yield (Y) and performance ratio (PR) for the two modules have been evaluated on a monthly and yearly basis. The typical seasonal trend of PR has been observed for the polycrystalline module, essentially due to the temperature influence on the module performance. For the a-Si module, instead, a degradation trend has been observed for the first months of operation. Subsequently, a significant recovery in the PR and energy production has been registered.


2022 ◽  
Vol 49 ◽  
pp. 101771
Author(s):  
N. Belhaouas ◽  
F. Mehareb ◽  
E. Kouadri-Boudjelthia ◽  
H. Assem ◽  
S. Bensalem ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Irfan Jamil ◽  
Jinquan Zhao ◽  
Li Zhang ◽  
Rehan Jamil ◽  
Syed Furqan Rafique

The installation of 3 × 50 MW (150 MW DC) large utility scale solar power plant is ground based using ventilated polycrystalline module technology with fixed tilt angle of 28° in a 750-acre land, and the site is located about 115 km northeast of Karachi, Pakistan, near the town of ThanoBula Khan, Nooriabad, Sindh. This plant will be connected to the utility distribution system through a national grid of 220 kV outgoing double-loop transmission line. The 3 × 50 MW solar PV will be one of the largest tied grid-connected power projects as the site is receiving a rich average solar radiation of 158.7 kW/h/m2/month and an annual average temperature of about of 27°C. The analysis highlights the preliminary design of the case project such as feasibility study and PV solar design aspects and is based on a simulation study of energy yield assessment which has all been illustrated. The annual energy production and energy yield assessment values of the plant are computed using the PVSYST software. The assumptions and results of energy losses, annual performance ratio (PR) 74.73%, annual capacity factor 17.7%, and annual energy production of the plant at 232,518 MWh/year are recorded accordingly. Bear in mind that reference recorded data indicates a good agreement over the performance of the proposed PV power plant.


2014 ◽  
Vol 472 ◽  
pp. 206-210
Author(s):  
S. Basu Pal ◽  
S. Bijali ◽  
S.R. Bhadra Chaudhuri ◽  
D. Mukherjee

Linear Interpolation methods for predicting the I-V characteristics for c-Si PV modules in outdoor conditions have been used by various groups of researchers. This is essential for minimizing the uncertainty in predicting essential photovoltaic parameters of interpolated I-V characteristics. A near optimum value of empirical co-efficient used in Tsunos model has been investigated under typical Eastern Indian Climatic conditions.


2020 ◽  
Vol 39 (2) ◽  
pp. 572-576
Author(s):  
E. Anoliefo ◽  
O.U. Oparaku ◽  
S. Egoigwe ◽  
S. Olisa

Despite the acclaimed long-term benefits of solar PV systems, most stand-alone solar projects in Nigeria seem to fail within a short duration. In this work, an analysis is carried out to examine the factors that lead to such poor performance of solar projects in Nigeria. A case study of standalone solar street lights (SASSL) in Nsukka geographical region in Nigeria was explored. The field work was carried out from Dec 2016 - January 2018. Data from field indicate that in most cases, premature battery failure due to undercharging was responsible for the collapse of these stand-alone solar systems. Given that the PV module is the sole charge generator in SASSL, the energy yield of the PV modules used in the SASSLs were further investigated. Controlled experiments were carried out to determine the impact of specific environmental and installations conditions on the yield of the PV modules. The results of the experiments led to the development of a model. The weather and installation specific data were then inserted into the model and were used to determine the likely reasons for the premature failure of SASSLs. The results indicated that the within the period under review, the PV modules were capable of providing adequate energy to the battery for only 25% of the time. For another 25% of the time the energy provided were marginal while for 50% of the time the energy provided were grossly inadequate. Keywords: Failure, Battery, Dust, Solar, mechanism, Street light, Irradiance, PV Module.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


Sign in / Sign up

Export Citation Format

Share Document