scholarly journals High Efficient DC-DC Converter with Low-Input Ripple

The depletion of fossil fuel reserves and increased energy demand led to search of renewable energy resources. There are various renewable sources are available. Among these, the solar PV is most commonly used. In this paper a high efficient converter has been deliberated. There are two stages of conversion. In first stage, large conversion ratio with low potential stress on converter switch is accomplished. In second stage, the conversion rate of the converter is further improved with reduced conduction losses. A cuk regulator integrated through Boost and SEPIC converter based topology has been presented. The design parameters of proposed switched mode regulator topology has discussed and results are verified with MATLAB simulation

Author(s):  
Manoj Kumar Singh ◽  
Bharat Raj Singh

India has a vast supply of renewable energy resources, and it has one of the largest programs in the world for deploying renewable energy products and systems. Indeed, it is the only country in the world to have an exclusive ministry for renewable energy development, the Ministry of Non-Conventional Energy Sources (MNES). Since its formation, the Ministry has launched one of the world's largest and most ambitious programs on renewable energy. Based on various promotional efforts put in place by MNES, significant progress is being made in power generation from renewable energy sources. India emerged in 2008 as an aspiring producer of solar PV. Both National and State Governments announced new policies to support solar PV manufacturing in special economic zones, including capital investment subsidies of 20 percent. These policies led to USD 18 billion in new solar PV manufacturing investment plans or proposals by a large number of companies. We know where the non renewable energies – coal, oil and gas – are located and how these fuels are transported, combusted, and the power transmitted throughout the country over the power grid. Now, let's look at the renewable energies hydro, solar, wind and biomass. According to the Energy Information administration (EIA) the annual average increase will be about 4.0 percent from 2002 to 2025. The projected growth in net electricity consumption for emerging market economies is driven in large part by Gross Domestic Product (GDP) and population growth assumption. It makes sense to the authors that all efforts and investment should consider accelerating these sustainable energy resources before committing to the same fossil fuel path as western nations. The fossil fuel strategy will surely bring price volatility from dwindling supplies and added pollution from carbon combustion. Tapping India's wind, solar, biomass, and hydro could bring high quality jobs from a domestic resource. Renewable energy is the measure of the development of a nation like India extensive development of the renewable energy resources on the Indian subcontinent through MNES booming economic growth, rapid Industrialization and high standard of living of global population demand more and more energy in different forms.


Energy is the one of the basic requirements for sustained economic growth. To meet the growing requirement of energy, and to reduce the CO2 emission, many countries have chosen to meet its energy demand through renewable energy resources for sustainable development. Most popular renewable energy resources are solar and wind; due to the technological advancement in solar technology and its demand in the market made solar panels comparatively cheaper. One of the popular ways to extract solar power is installing solar rooftop. The main factor, which affects the performance of solar rooftop PV system, is power mismatch due to shading. In the literature, many reconfiguration methods have proposed based on electrical interconnections and physical location of the solar cell/modules. In this paper, physical-location based techniques are modified as electrical interconnection techniques and its performance is compared through experimentation at various shading patterns.


2019 ◽  
Vol 103 ◽  
pp. 02005
Author(s):  
Vladimir Klimenko ◽  
Alexei Tereshin ◽  
Olga Mikushina

Biofuels are an important energy source, currently providing about 10% of the world energy demand, including 2% of global electricity generation and the same share of total liquid fuel consumption. Wood fuel in Russia is one of the most affordable and most important type of renewable energy resources. In this paper we study the possible changes in energy potential of Russia's forest resources as a result of changes in the atmosphere and climate. The estimates of the global dioxide concentrations dynamics and mean annual air temperature change over the Russian territory for the period up to 2050 are developed using the MPEI models of the carbon cycle and regional climate. The calculations show that the change of net primary productivity of forests of Russia as a result of the CO2 abundance increase in the atmosphere, as well as of the increase of the air temperature and rainfall will enhance available energy resources of wood fuel by mid-century by more than 9 million tons of coal equivalent (Mtce).


Author(s):  
K. G. Burra ◽  
A. K. Gupta

Abstract Rising atmospheric CO2 levels from significant imbalance between carbon emissions from fossil fuel utilization, especially for energy and chemicals, and natural carbon sequestration rates is known to drive-up the global temperatures and associated catastrophic climate changes, such as rising mean sea level, glacial melting, and extinction of ecosystems. Carbon capture and utilization techniques are necessary for transition from fossil fuel infrastructure to renewable energy resources to help delay the dangers of reaching to the point of positive feedback between carbon emissions and climate change which can drive terrestrial conditions to uninhabitable levels. CO2 captured from the atmosphere directly or from flue gases of a power plant can be recycled and transformed to CO and syngas for use as energy and value-added chemicals. Utilizing renewable energy resources to drive CO2 conversion to CO via thermochemical redox looping can provide a carbon negative renewable energy conversion pathway for sustainable energy production as well as value-added products. Substituted ferrites such as Co-ferrite, Mnferrite were found to be promising materials to aid the conversion of CO2 to CO at lower reduction temperatures. Furthermore, the conversion of these materials in the presence of Al2O3 provided hercynite cycling, which further lowered the reduction temperature. In this paper, Co-ferrite and Co-ferrite-alumina prepared via co-precipitation were investigated to understand their potential as oxygen carriers for CO2 conversion under isothermal redox looping. Isothermal reduction looping provided improved feasibility in redox conversion since it avoids the need for temperature swinging which improves thermal efficiency. These efforts alleviates the energy losses in heat recovery while also reducing thermal stresses on both the materials and the reactor. Lab-scale testing was carried out at 1673 K on these materials for extended periods and multiple cycles to gain insights into cyclic performance and the feasibility of sintering, which is a common issue in iron-oxide-based oxygen carriers. Cobalt doping provided with lowering of reduction temperature requirement at the cost of oxidation thermodynamic spontaneity that required increased oxidation temperature. At the concentrations examined, these opposing phenomenon made isothermal redox operation feasible by providing high CO yields comparable to oxygen carriers in the literature, which were operated at different temperatures for reduction and oxidation. Significantly high CO yields (∼ 750 μmol/g) were obtained from Co-ferrite isothermal redox looping. Co-ferrite-alumina provided lower CO yields compared to Co-ferrite. The oxygen storage was similar to those reported in the literature on isothermal H2O splitting, but with improved morphological stability at high temperature, especially compared to ferrite. This pathway of oxygen carrier development is considered suitable with further requirement in optimization for scaling of renewable CO2 conversion into valuable products.


Author(s):  
Eur Ing A J Blokland ◽  
I P Barendregt ◽  
C J C M Posthumus

The Netherlands Ministry of Defence (MoD) has issued an Operational Energy Strategy (OES) with ambition targets for energy independence and improvement of energy efficiency during the life time of naval platforms. A target is given in 2030 of 20 % reduced dependence on fossil fuels and in 2050 of 70 % reduced dependence on fossil fuels, compared to 2010. More stringent environmental emission (NOx, CO2, etc.) requirements are to be expected as a result from IMO and (local) political regulations. In the last decades the power consumption on board of naval platforms increased substantially as well as the complexity of integrated energy systems. Market surveys shows that the evolution of commercial green technologies are promising but have to be demonstrated in the coming years on low power and energy levels. They will not be de-risked in depth or well proven to be successful in time to be selected for the Royal Netherlands Navy (RNLN) new naval projects (2019 – 2025). Furthermore, new technologies as energy resources and carriers (H2, LNG, methanol, power-to-liquid (PTL), etc.) or new system technologies (DC on high voltage level, fuel cell systems, waste energy recovery, etc.) require a new approach for integration aspects like hazard and safety cases and energy efficiency. This is because the energy demand on board of naval platforms in several military operational modes differ from the merchant and off-shore branch. In this paper an approach for an adaptable energy platform is described to design a new naval platform based on nowadays proven technology as fossil fuels that can be transformed during life time that can fulfill the expectations and requirements of the coming decades (non-fossil fuels, zero emission, improved energy efficiency). Aspects as a naval energy index as reference will be discussed as well as an evaluation of new technologies for new naval platform integration design parameters, such as power or energy demands, consequences of energy resources, energy control as well as build in ship construction safety measures.


2020 ◽  
pp. 014459872097067
Author(s):  
Krishnam Nair ◽  
Ajal Kumar

Fiji is located in the South Western part of the Pacific between latitude 18° S and longitude 179° E. In 2018, Fiji has spent approximately FJD 800 million in importing fossil fuel to meet the rising energy demand in the country. In the previous year’s several solar PV and wind resource assessments has been done and results obtained indicated that there is a potential for grid connected electricity generation using recommended resources. This study was carried out in the Nasawana Village (16°55.3 S and 178°47.4 E) to determine the options to use electricity derived from the wind. Wind analysis was carried out using Wind Atlas Analysis and Application Program (WAsP) that predicted the wind speed of 6.96 ms−1 and a power density of 256 Wm−2 at 55 m a.g.l. The annual energy production predicted for a single wind turbine (Vergnet 275 kW) is approximately 631.6 MWh with a capacity factor of 26%. The cost of energy per kWh is estimated as FJD 0.10 with a payback period of 7 years.


Author(s):  
Khaled Nusair ◽  
Lina Alhmoud

Over the last decades, the energy market around the world has reshaped due to accommodating the high penetration of renewable energy resources. Although renewable energy sources have brought various benefits, including low operation cost of wind and solar PV power plants, and reducing the environmental risks associated with the conventional power resources, they have imposed a wide range of difficulties in power system planning and operation. Naturally, classical optimal power flow (OPF) is a nonlinear problem. Integrating renewable energy resources with conventional thermal power generators escalates the difficulty of the OPF problem due to the uncertain and intermittent nature of these resources. To address the complexity associated with the process of the integration of renewable energy resources into the classical electric power systems, two probability distribution functions (Weibull and lognormal) are used to forecast the voltaic power output of wind and solar photovoltaic, respectively. Optimal power flow, including renewable energy, is formulated as a single-objective and multi-objective problem in which many objective functions are considered, such as minimizing the fuel cost, emission, real power loss, and voltage deviation. Real power generation, bus voltage, load tap changers ratios, and shunt compensators values are optimized under various power systems’ constraints. This paper aims to solve the OPF problem and examines the effect of renewable energy resources on the above-mentioned objective functions. A combined model of wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE 30-bus system are performed using the equilibrium optimizer technique (EO) and other five heuristic search methods. A comparison of simulation and statistical results of EO with other optimization techniques showed that EO is more effective and superior.


Author(s):  
Mehmet Alper Sofuoglu ◽  
Murat Erbas ◽  
Ibrahim Uslan ◽  
Atilla Biyikoglu

In this study, a gas atomization nozzle for metal powder production has been designed and modeled numerically. The design has been performed in two stages. At the first stage of the design, the size and geometry of the nozzle have been developed to obtain circulated flow through the nozzle as a pre-design. At the second stage, a parametrical analysis has been done using a CFD code. The geometry of the nozzle has been changed and the effect of geometric parameters was determined to find out the more efficient nozzle design parameters. Gas behavior at the nozzle exit and effect of the gas on the melt delivery tube tip has been investigated. Appropriate values for the investigated parameters have been determined to get maximum pressure in vacuum condition at the tip of the melt. The pressure observed at the melt delivery tube was compared with the experimental melt tip pressure data. These results suggest that the CFD solutions can be used in the design of the nozzle. Thus, the lower cost and shorter time would be possible to develop highly efficient nozzle geometry.


2014 ◽  
Vol 699 ◽  
pp. 853-857 ◽  
Author(s):  
Abraham Debebe Woldeyohannes ◽  
Dereje Engida Woldemichael ◽  
Lim Chye Ing ◽  
Eng Ze Ru

This paper aims to address the issues related to renewable energy (RE) resources optimization at rural areas. A transportation algorithm is proposed in order to optimize the utilization of renewable energy and allocate various renewable energy resources to different demand stations. A rural area in Sarawak, Malaysia is selected as a pilot area for implementing the proposed method. The total annual energy demand for the pilot research area is 860,567.12 kWh, while the annual renewable energy potentially available is 879,419.48 kWh. The simulation results of this transportation model reflect that although there is a potential for solar and wind energy at the selected rural area, the model has selected hydropower and biomass as a more viable option. The results obtained from the proposed transportation model have been verified with the results of other RE studies. It is proven that the developed model could be used as a decision making tool to evaluate application of various alternative renewable energy resources and to determine the optimal location for development of these resources.


Author(s):  
Bharat Raj Singh ◽  
Onkar Singh

Greater use of hydrocarbon fuel has led to fast depletion of fossil fuel reserves. This has now become worldwide problem making civilization vulnerable due to paucity of fuel in future. It is also a fact that as civilization is growing the use of transport has become essential part of life. The use of large number of vehicles for transport is contributing to about 70% of total air pollution, creating environmental & ecological imbalances. About 100–150 years old transport technology is totally based on combustions causing higher rate of emission, ultimately depleting the thickness of Ozone layer and causing the global warming. Thus worldwide fast depletion of conventional energy resources necessitates the search of alternatives such as Non-Conventional Energy Sources, Renewable Energy Sources and other Direct Conversion of Energy Sources. This paper deals with study on potential of renewable energy resources and their conversion system with emphasis on development of zero pollution engine for vehicles which may lead to sustainable future.


Sign in / Sign up

Export Citation Format

Share Document