scholarly journals Unpaired Image- to- Image Translation using Cycle Generative Adversarial Networks

In this burgeoning age and society where people are tending towards learning the benefits adversarial network we hereby benefiting the society tend to extend our research towards adversarial networks as a general-purpose solution to image-to-image translation problems. Image to image translation comes under the peripheral class of computer sciences extending our branch in the field of neural networks. We apprentice Generative adversarial networks as an optimum solution for generating Image to image translation where our motive is to learn a mapping between an input image(X) and an output image(Y) using a set of predefined pairs[4]. But it is not necessary that the paired dataset is provided to for our use and hence adversarial methods comes into existence. Further, we advance a method that is able to convert and recapture an image from a domain X to another domain Y in the absence of paired datasets. Our objective is to learn a mapping function G: A —B such that the mapping is able to distinguish the images of G(A) within the distribution of B using an adversarial loss.[1] Because this mapping is high biased, we introduce an inverse mapping function F B—A and introduce a cycle consistency loss[7]. Furthermore we wish to extend our research with various domains and involve them with neural style transfer, semantic image synthesis. Our essential commitment is to show that on a wide assortment of issues, conditional GANs produce sensible outcomes. This paper hence calls for the attention to the purpose of converting image X to image Y and we commit to the transfer learning of training dataset and optimising our code.You can find the source code for the same here.

Author(s):  
J. D. Bermudez ◽  
P. N. Happ ◽  
D. A. B. Oliveira ◽  
R. Q. Feitosa

<p><strong>Abstract.</strong> Optical imagery is often affected by the presence of clouds. Aiming to reduce their effects, different reconstruction techniques have been proposed in the last years. A common alternative is to extract data from active sensors, like Synthetic Aperture Radar (SAR), because they are almost independent on the atmospheric conditions and solar illumination. On the other hand, SAR images are more complex to interpret than optical images requiring particular handling. Recently, Conditional Generative Adversarial Networks (cGANs) have been widely used in different image generation tasks presenting state-of-the-art results. One application of cGANs is learning a nonlinear mapping function from two images of different domains. In this work, we combine the fact that SAR images are hardly affected by clouds with the ability of cGANS for image translation in order to map optical images from SAR ones so as to recover regions that are covered by clouds. Experimental results indicate that the proposed solution achieves better classification accuracy than SAR based classification.</p>


Author(s):  
Chien-Yu Lu ◽  
Min-Xin Xue ◽  
Chia-Che Chang ◽  
Che-Rung Lee ◽  
Li Su

Style transfer of polyphonic music recordings is a challenging task when considering the modeling of diverse, imaginative, and reasonable music pieces in the style different from their original one. To achieve this, learning stable multi-modal representations for both domain-variant (i.e., style) and domaininvariant (i.e., content) information of music in an unsupervised manner is critical. In this paper, we propose an unsupervised music style transfer method without the need for parallel data. Besides, to characterize the multi-modal distribution of music pieces, we employ the Multi-modal Unsupervised Image-to-Image Translation (MUNIT) framework in the proposed system. This allows one to generate diverse outputs from the learned latent distributions representing contents and styles. Moreover, to better capture the granularity of sound, such as the perceptual dimensions of timbre and the nuance in instrument-specific performance, cognitively plausible features including mel-frequency cepstral coefficients (MFCC), spectral difference, and spectral envelope, are combined with the widely-used mel-spectrogram into a timbreenhanced multi-channel input representation. The Relativistic average Generative Adversarial Networks (RaGAN) is also utilized to achieve fast convergence and high stability. We conduct experiments on bilateral style transfer tasks among three different genres, namely piano solo, guitar solo, and string quartet. Results demonstrate the advantages of the proposed method in music style transfer with improved sound quality and in allowing users to manipulate the output.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hyunhee Lee ◽  
Jaechoon Jo ◽  
Heuiseok Lim

Due to institutional and privacy issues, medical imaging researches are confronted with serious data scarcity. Image synthesis using generative adversarial networks provides a generic solution to the lack of medical imaging data. We synthesize high-quality brain tumor-segmented MR images, which consists of two tasks: synthesis and segmentation. We performed experiments with two different generative networks, the first using the ResNet model, which has significant advantages of style transfer, and the second, the U-Net model, one of the most powerful models for segmentation. We compare the performance of each model and propose a more robust model for synthesizing brain tumor-segmented MR images. Although ResNet produced better-quality images than did U-Net for the same samples, it used a great deal of memory and took much longer to train. U-Net, meanwhile, segmented the brain tumors more accurately than did ResNet.


2022 ◽  
pp. 98-110
Author(s):  
Md Fazle Rabby ◽  
Md Abdullah Al Momin ◽  
Xiali Hei

Generative adversarial networks have been a highly focused research topic in computer vision, especially in image synthesis and image-to-image translation. There are a lot of variations in generative nets, and different GANs are suitable for different applications. In this chapter, the authors investigated conditional generative adversarial networks to generate fake images, such as handwritten signatures. The authors demonstrated an implementation of conditional generative adversarial networks, which can generate fake handwritten signatures according to a condition vector tailored by humans.


2021 ◽  
Vol 11 (5) ◽  
pp. 2013
Author(s):  
Euihyeok Lee ◽  
Seungwoo Kang

What if the window of our cars is a magic window, which transforms dark views outside of the window at night into bright ones as we can see in the daytime? To realize such a window, one of important requirements is that the stream of transformed images displayed on the window should be of high quality so that users perceive it as real scenes in the day. Although image-to-image translation techniques based on Generative Adversarial Networks (GANs) have been widely studied, night-to-day image translation is still a challenging task. In this paper, we propose Daydriex, a processing pipeline to generate enhanced daytime translation focusing on road views. Our key idea is to supplement the missing information in dark areas of input image frames by using existing daytime images corresponding to the input images from street view services. We present a detailed processing flow and address several issues to realize our idea. Our evaluation shows that the results by Daydriex achieves lower Fréchet Inception Distance (FID) scores and higher user perception scores compared to those by CycleGAN only.


In the recent past, text-to-image translation was an active field of research. The ability of a network to know a sentence's context and to create a specific picture that represents the sentence demonstrates the model's ability to think more like humans. Common text--translation methods employ Generative Adversarial Networks to generate high-text-images, but the images produced do not always represent the meaning of the phrase provided to the model as input. Using a captioning network to caption generated images, we tackle this problem and exploit the gap between ground truth captions and generated captions to further enhance the network. We present detailed similarities between our system and the methods already in place. Text-to-Image synthesis is a difficult problem with plenty of space for progress despite the current state-of - the-art results. Synthesized images from current methods give the described image a rough sketch but do not capture the true essence of what the text describes. The re-penny achievement of Generative Adversarial Networks (GANs) demonstrates that they are a decent contender for the decision of design to move toward this issue.


2020 ◽  
Vol 34 (07) ◽  
pp. 10981-10988
Author(s):  
Mengxiao Hu ◽  
Jinlong Li ◽  
Maolin Hu ◽  
Tao Hu

In conditional Generative Adversarial Networks (cGANs), when two different initial noises are concatenated with the same conditional information, the distance between their outputs is relatively smaller, which makes minor modes likely to collapse into large modes. To prevent this happen, we proposed a hierarchical mode exploring method to alleviate mode collapse in cGANs by introducing a diversity measurement into the objective function as the regularization term. We also introduced the Expected Ratios of Expansion (ERE) into the regularization term, by minimizing the sum of differences between the real change of distance and ERE, we can control the diversity of generated images w.r.t specific-level features. We validated the proposed algorithm on four conditional image synthesis tasks including categorical generation, paired and un-paired image translation and text-to-image generation. Both qualitative and quantitative results show that the proposed method is effective in alleviating the mode collapse problem in cGANs, and can control the diversity of output images w.r.t specific-level features.


2021 ◽  
Vol 37 ◽  
pp. 01005
Author(s):  
M. Krithika alias Anbu Devi ◽  
K. Suganthi

Generative Adversarial Networks (GANs) is one of the vital efficient methods for generating a massive, high-quality artificial picture. For diagnosing particular diseases in a medical image, a general problem is that it is expensive, usage of high radiation dosage, and time-consuming to collect data. Hence GAN is a deep learning method that has been developed for the image to image translation, i.e. from low-resolution to highresolution image, for example generating Magnetic resonance image (MRI) from computed tomography image (CT) and 7T from 3T MRI which can be used to obtain multimodal datasets from single modality. In this review paper, different GAN architectures were discussed for medical image analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhuorong Li ◽  
Wanliang Wang ◽  
Yanwei Zhao

Image translation, where the input image is mapped to its synthetic counterpart, is attractive in terms of wide applications in fields of computer graphics and computer vision. Despite significant progress on this problem, largely due to a surge of interest in conditional generative adversarial networks (cGANs), most of the cGAN-based approaches require supervised data, which are rarely available and expensive to provide. Instead we elaborate a common framework that is also applicable to the unsupervised cases, learning the image prior by conditioning the discriminator on unaligned targets to reduce the mapping space and improve the generation quality. Besides, domain-adversarial training inspired by domain adaptation is proposed to capture discriminative and expressive features, for the purpose of improving fidelity. Effectiveness of our method is demonstrated by compelling experimental results of our method and comparisons with several baselines. As for the generality, it could be analyzed from two perspectives: adaptation to both supervised and unsupervised setting and the diversity of tasks.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhuo Zhang ◽  
Guangyuan Fu ◽  
Fuqiang Di ◽  
Changlong Li ◽  
Jia Liu

The traditional reversible data hiding technique is based on cover image modification which inevitably leaves some traces of rewriting that can be more easily analyzed and attacked by the warder. Inspired by the cover synthesis steganography-based generative adversarial networks, in this paper, a novel generative reversible data hiding (GRDH) scheme by image translation is proposed. First, an image generator is used to obtain a realistic image, which is used as an input to the image-to-image translation model with CycleGAN. After image translation, a stego image with different semantic information will be obtained. The secret message and the original input image can be recovered separately by a well-trained message extractor and the inverse transform of the image translation. The experimental results have verified the effectiveness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document