scholarly journals Optimum Dose of Binary Admixtures in Self Compacting Concrete

Self Compacting Concrete (SCC) is a high performance concrete and is becoming popular day by day in the field of construction. Generally, the quantity of binder is more in SCC than the normal concrete. The application of pozzolanic material is found successful in such type of concrete. Generally, Ordinary Portland Cement (OPC) is replaced with Fly Ash (FA). In this paper, the results of an experimental programme to evaluate the performance of SCC are presented and optimum dose of binary admixture was found. For the determination of the optimum dose, concrete cubes of 100mm sizes were cast. The replacement level of OPC by FA was varied as- 5, 10, 15 and 20%, by mass. The OPC was also replaced separately by Metakaolin (MK) - 5, 10, 15 and 20%, by mass. Further, the OPC was replaced by the binary admixture (FA+MK). The workability and strength of SCC of grade M25 (Referral concrete- RC) and the concrete using the binary admixtures were studied. All SCC mixes were tested for workability as recommended by EFNARC i.e. Slump flow, T50 time flow, V-funnel, L-box, U-box and J-ring. The workability of SCC mix increases with FA and decreases gradually as MK content is increased. The optimum replacement level of OPC by binary admixture is 25% (FA-15% + MK-10%) with respect to compressive strength. The water absorption of cubes was also examined. It is concluded that a high strength and economical SCC could be developed by incorporation of FA and MK.

1999 ◽  
Vol 5 (1) ◽  
pp. 29-40
Author(s):  
R. Krumbach ◽  
U. Schmelter ◽  
K. Seyfarth

Abstract Variable obsen>ations concerning frost resistance of high performance concrete have been made. The question arises which are the decisive factors influencing durability under the action of frost and de-icing salt. The proposed experiments are to be carried out in cooperation with F.A.- Finger - Institute of Bauhaus University Weimar. The aim of this study is to determine possible change of durability of high strength concrete, and to investigate the origin thereof. Measures to reduce the risk of reduced durability have to be found.


2018 ◽  
Vol 149 ◽  
pp. 01005 ◽  
Author(s):  
Arezki Tagnit-Hamou ◽  
Ablam Zidol ◽  
Nancy Soliman ◽  
Joris Deschamps ◽  
Ahmed Omran

Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental). It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.


2011 ◽  
Vol 250-253 ◽  
pp. 761-764 ◽  
Author(s):  
Zan Zhi Wang ◽  
Franciscus Xaverius Supartono

The obstacles met during the production and construction of High Strength Concrete (HSC) and High Performance Concrete (HPC) are analyzed, then the poly-carboxylate based admixture is studied in detail. After that, presents the trend of using Self Compacting Concrete (SCC) to improve the performance of concrete structures, i.e. its durability and reliability, because its highly flowing nature makes it suitable for placing concrete in difficult conditions and sections, especially with crowded steel reinforcement. Utilization of SCC can also reduce the time required for placing large sections in concrete structures, e.g. in the basement or substructure’s concrete pouring. SCC may also minimize the noises on the construction site that are induced by concrete vibrators. Accompanying the presentation of the performance of SCC, its applications in the recently completed Grand Wisata Cable Stayed Bridge designed by the Authors are also introduced.


2015 ◽  
Vol 1122 ◽  
pp. 278-281 ◽  
Author(s):  
Jan Barnat ◽  
Miroslav Bajer

This paper summarizes the results of pilot experimental research focused on determination of the behaviour and bond strength limits of currently most widespread industrial glues used for anchor bonding. The goal of this research is to find the limits of the effective use of such glue types in high performance concrete, and also to verify the most commonly used design methods for bonded anchors. The progress and configuration of the experiments are described. The goal of this research is to find the limits of effective use of these glue types in high performance concrete and also verification of mostly used design methods. The article is closely focused on bond strength experiments using high strength concrete up to class C50/60 or higher together with pure epoxy resin and FRP reinforced resin).


2013 ◽  
Vol 438-439 ◽  
pp. 338-341
Author(s):  
Xiang Ping Xian ◽  
Wu Jian Long ◽  
Biao Yi Chen ◽  
Min Yi Huang ◽  
Yong Fa Fan

Self-compacting concrete (SCC) refers to one kind of high-performance concrete which can fill formwork and condensed reinforced steel by the weight of concrete mixture without vibration. In this investigation, local raw materials from Shenzhen Jinqiang Concrete Co. Ltd were employed. Self-compacting concrete mixtures with targeted 3-day compressive strengths of 60MPa or 80MPa and required flow properties were evaluated. Moreover, the SCC was successfully applied in Shenzhen Mangrove Garden project.


Author(s):  
C. Sukanya ◽  
Mr. R. Surya Prakash

This project is related on the use of Silica fume as a substitution of cement and 100% m- sand as fine aggregate. Concrete is the most widely utilized material in the construction industry and will hold good for years. The credit is attributed to the properties of concrete like excellent strength, durability and less maintenance costs. But in the recent years, the concrete industry is facing a big challenge mainly due to the cement which is a vital component. In order to improve the durability properties many types of special concretes such as High Strength Concrete, High Performance Concrete, Fibre Reinforced Concrete, Self-Compacting Concrete, etc. have been developed. High performance concrete has become an attractive option to Civil Engineers due to the special characteristics like early strength, ease of placement, permeability, mechanical and durability properties. The performance of High strength Concrete (HSC) is enhanced by the addition of admixtures which act as pozzolans as well as fillers, thereby improving the microstructure of the interfacial transition zone making it denser and impermeable. Silica Fume (SF) is a commonly used pozzolanic material owing to its high silicon dioxide content and fineness. This ultra fine property of SF used in concrete to improve its strength and durability.


2021 ◽  
Vol 31 (2) ◽  
pp. 163-177
Author(s):  
Muhammad Tarique Lakhiar ◽  
Muhammad Tahir Lakhiar ◽  
Abd Halid Abdullah ◽  
Noridah Mohamad

Abstract Many researchers have investigated alternative sources to overcome the problem of conventional building material polluting the environment by the development of green self-compacting concrete in the construction industry. The best alternative solution is to utilise non-conventional construction materials like agricultural wastes. Meanwhile, self-compacting concrete (SCC) is considered as high strength as well as high-performance concrete. The demerits, which include tensile and flexural strength, can be improved by incorporating coir fibres. The utilisation of coir fibres also modifies self-compacting concrete performance after cracking and improves the toughness. This study defines an experimental investigation of the mechanical properties of self-compacting concrete containing coir fibres (CF) with different percentages being 0%, 0.2%, 0.5%, 1%, and 1.5% at 7- and 28-days water curing. The mechanical properties include the slump flow and compressive and tensile strength were examined. The outcomes demonstrated that a required slump flow for self-compacting concrete was achieved using coir fibres up to 1%, beyond which it reduced the slump significantly. The length of fibre and proportion of fibres directly affected the workability. The compressive strength was 10% to 15% enhanced with the incorporation of coir fibres up to 0.5%; after that, the strength was slightly reduced, and tensile strength was 30% to 50% improved compared to conventional self-compacting concrete up to 1% of coir fibres incorporation in the SCC mix, after which it rapidly reduced.


Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


2021 ◽  
Vol 16 (2-3) ◽  
pp. 61-74
Author(s):  
Sahar Ghasemi ◽  
Amir Mirmiran ◽  
Yulin Xiao ◽  
Kevin Mackie

A super lightweight deck can enhance load rating and functionality of a bridge, especially those identified as structurally deficient. This study was aimed to develop and experimentally validate a novel bridge deck as an ultra-lightweight low-profile waffle slab of ultra-high-performance concrete (UHPC) with either carbon fiber reinforced polymer (CFRP) or high strength steel (HSS) reinforcement. The proposed system lends itself to accelerated bridge construction, rapid deck replacement in bridges with load restrictions, and bridge widening applications without the need to replace girders. Performance and failure modes of the proposed deck were initially assessed through extensive lab experiments and finite element analysis, which together confirmed that the proposed deck panel meets the AASHTO LRFD requirements. The proposed deck system is not susceptible to punching shear of its thin slab and fails in a rather ductile manner. To evaluate its long-term performance, the system was further tested under the dynamic impact of wheel load at the Accelerated Pavement Testing (APT) facility of the Florida Department of Transportation using a Heavy Vehicle Simulator (HVS).


Sign in / Sign up

Export Citation Format

Share Document