scholarly journals Machining Process Parameters on Green Composite Material

In this work, the Abrasive water jet machining process on a natural fiber composite material has been discussed . the material as in nature fibere material. The natural fiber material has in a low weight material. In the material used in a light weight application. In the material mostly used in a automobile structural application. In the material not used in load condition application. In the material used in a unload condition material. The material was prepared by hand layup technique. The material was discussed about the machining character station of the process. For this process, the following parameters - standoff distance, abrasive flow rate, water pressure were determined. The output parameters considered are Material Remove rate and Surface roughness. in this condition the material removal rate will be increased and the surface roughness also increased. In the above condition was been solve the problem. The DOE was done by Mine tab software. Finally, the optimization result of the process has been conculded.

2020 ◽  
pp. 096739112090905
Author(s):  
Kuppuraj Arunkumar ◽  
Angamuthu Murugarajan

Natural-fibre reinforced composite material is an emerging material that has great potential to be used in various industrial aspects and applications. The cotton-viscose-reinforced composite is prepared using a compression moulding process. In addition to it, analysis of its mechanical properties was also carried out, such as tensile strength, flexural strength, impact strength and hardness. An attempt was made to process the prepared composite material using abrasive water jet machining (AWJM) under different process parameters (water pressure, nozzle transfer speed and abrasive flow rate) levels to determine the better suitable process conditions to achieve the better surface finish and optimize the machining process. The significance of the optimization process was ensured using the results of the analysis of variance. Morphological analyses of the machined surface were performed using a scanning electron microscope. The surface roughness of 8.28 µm was found to be the optimized process parameter. Optimum process parameters in AWJM are used to improve the surface quality.


2021 ◽  
Author(s):  
S. S Kulkarni ◽  
Sarika Sharma

This paper represents the optimization method utilized in machining process for figuring out the most advantageous manner design. Typically, the technique layout parameters in machining procedures are noticeably few turning parameters inclusive of reducing velocity, feed and depth. The optimization of speed, feed depth of cut is very tough because of several other elements associated with processing situations and form complexities like surface Roughness, material removal rate (MRR) that are based Parameters. On this task a new fabric glass fibre composite is introduced through which could lessen costing of manufacturing and time and additionally it will boom the technique of productiveness. Composite substances have strength, stiffness, light weight, which gives the large scope to engineering and technology. The proposed research work targets to analyze turning parameters of composite material. The machining parameters are very important in manufacturing industries. The present research work is optimized surface roughness of composite material specifically in turning procedure with the aid of changing parameter including intensity of reduce, slicing velocity and feed price and additionally expect the mechanical houses of composite material. The RSM optimization is important because it evaluates the effects of multiple factors and their interactions on one or more responsive variables. It is observed that the material removal rate increases and surface roughness decreases as per the increase of Spindle speed and feed rate.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sri Hastuti ◽  
Catur Pramono ◽  
Yafi Akhmad

The Eichornia crassipes fiber have potentially as a composite reinforcing material. The advantage of composites with natural fibers like to light weight, corrosion resistance, water resistance, attractive performance, and without machining process. The purpose of using natural fiber as an alternative material to replace glass fiber composite material with Eichornia crassipes fibers are friendly and cheap. The research material used Eichornia crassipes fiber, NaOH, Etanol, and H2O. Processing of Eichornia crassipes fiber is washing with water, natural drying ± 10 days in eviromental, fiber taking with steel brush. Dry fibre were subjected to 10%, 20%, 30% NaOH and ethanol solution with variations of immersion time of 2, 4, 6 hours, neutralization with H20, and drying at room temperature. The Single fiber tensile test specimens were made with variations of treatment type in NaOH and Ethanol solution (10%, 20%, 30%), immersion time of 2, 4, and 6 hours. Single fiber test specimens refer to standard ASTM D 3379. Optimum tensile strength test results on NaOH treatment 20% variation of immersion time 4 hours: 28.402 N / mm2 and on ethanol treatment 20% variation of immersion time 2 hours: 48.197 N / mm2.


2004 ◽  
Vol 471-472 ◽  
pp. 473-476 ◽  
Author(s):  
Ju Long Yuan ◽  
Fei Yan Lou ◽  
Zhi Wei Wang ◽  
M. Chang ◽  
W.P. Du ◽  
...  

Potassium Titanium Oxide Phosphate (KTP) is a new nonlinear frequency-conversion crystal. It has chemical stability, high nonlinear coefficient, high damage threshold, easily-polished surface, and a broad transparency range. It is be used in solid green laser with medium and low power widely. The requirement for surface roughness is less than 1nm.In this paper, the removal rate and surface roughness are discussed with different velocity, pressure and size of abrasive powder. In order to satisfy the requirement, new polishing techniques with ultra-precision plane polishing machine (Nanopoli-100), and fine AL2O3, SiO2 powders are proposed in this study. The final surface roughness of the KTP is less than 1nm.The machining process and characteristics are also indicated.


2019 ◽  
Vol 814 ◽  
pp. 127-131
Author(s):  
Patittar Nakwong ◽  
Apiwat Muttamara

Wire electrical discharge machine (WEDM) is non-conventional machining process. It can be used for hard cutting material. The study has been presented the combining WEDM with an ultrasonic machine (USM) with brass and tungsten were used as a wire electrode and workpiece respectively. The experiment was carried out with an ultrasonic transducer at 40, 80 kHz. The results were observed with the material removal rate (MRR) and surface roughness (Ra). This research introduced the method of USM setup and described the effected of vibration with the wire electrode on the displacement of amplitude. The result shows that the WEDM process with USM at 40 kHz can be more improved with the material removal rate and surface roughness than that of USM at 80 kHz. This can be explained that higher frequency affected to vibration displacement which makes lower amplitude.


Author(s):  
Naresh Babu Munuswamy ◽  
M. Nambi Krishnan

This study investigates optimal parameter setting in abrasive waterjet machining (AWJM) on aluminium alloy AA 6351, using taguchi based Grey Relational Analysis (GRA) is been reported. The water pressure, traverse speed and stand-off-distance were chosen as the process parameters in this study. An L9 orthogonal matrix array is used for the experimental plan. The performance characteristics which include surface roughness (Ra) and kerf angle (KA) are considered. The results indicate that surface roughness and kerf angle decreases, with increase in water pressure and decrease in traverse speed. Analysis of variance (ANOVA) illustrates that traverse speed is the major parameter (89.7%) for reducing surface roughness and kerf angle, followed by water pressure (5.85%) and standoff distance (2%) respectively. The confirmation results reveal that surface roughness reduced by 16% and kerf angle reduced by 47%. Furthermore, the surfaces were examined under scanning electron microscope (SEM) and atomic force microscope (AFM) for a detailed study


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Lei Guo ◽  
Xinrong Zhang ◽  
Shibin Chen ◽  
Jizhuang Hui

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.


2011 ◽  
Vol 189-193 ◽  
pp. 1393-1400 ◽  
Author(s):  
M.M. Rahman

Electrical discharge machining (EDM) is relatively modern machining process having distinct advantages over other machining processes and able to machine Ti-alloys effectively. This paper attempts to investigate the effects of process parameters on output response of titanium alloy Ti-6Al-4V in EDM utilizing copper tungsten as an electrode and positive polarity of the electrode. Mathematical models for material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) are developed in this paper. Design of experiments method and response surface methodology techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance. It can be seen that as the peak current increases the TWR decreases till certain ampere and then increases. The excellent surface finish is investigated in this study at short pulse on time and in contrast the long pulse duration causes the lowest EWR. Long pulse off time provides minimum EWR and the impact of pulse interval on EWR depends on peak current. The result leads to wear rate of electrode and economical industrial machining by optimizing the input parameters. It found that the peak current, servo voltage and pulse on time are significant in material removal rate and surface roughness. Peak current has the greater impact on surface roughness and material removal rate.


Sign in / Sign up

Export Citation Format

Share Document