scholarly journals Structural Performance of Steel Fibre Reinforced Lightweight Concrete Frames Subjected to Lateral Load

Masonry infilled Reinforced Concrete (RC) framed structure is the utmost common kind of building in which, RC frames contribute in resisting lateral forces. Due to heavy mass and rigid construction, the RC framed buildings performs unfortunate under lateral forces. Practice of Lightweight concrete (LWC) is superlative because the dead load of concrete is massive. Low density materials are chosen in LWC, reduces the mass of the building thus decreasing the influence of lateral forces. However, LWC having a lesser modulus of elasticity has a more rapidly develops the cracks in the RC members. In this investigation, pumice is a naturally available material of volcanic source, has low density, which creates it ideal for production of LWC, likewise steel fibres are employed as an additive to enhance the energy absorption ability and to reduce the possibility of development of the cracks. In the present paper the structural behaviour of Lightweight RC framed structures realized by using steel fibres and subjected to lateral forces, In this study, four RC frames viz., F1-NWC (Control), F2- NWCF (with 1% Vf of steel fibres), F3-LWC (with 20% substitute of coarse aggregate instead of pumice aggregate) and F4-LWCF (with 20% substitute of coarse aggregate instead of pumice aggregate and 1% Vf of steel fibres) were casted and tested under in-plane horizontal loading, which are designed according to Indian Standard (IS) code IS 456 (2000). It was observed that the behaviour of F4-LWCF significantly better in comparison to other frames in various parameters such as load carrying capacity, displacement, ductility, stiffness and energy dissipation.

Masonry infilled Reinforced Concrete (RC) framed structure is the utmost common kind of building in which, RC frames contribute in resisting lateral forces. Due to heavy mass and rigid construction, the RC framed buildings performs unfortunate under lateral forces. Practice of Lightweight concrete (LWC) is superlative because the dead load of concrete is massive. Low density materials are chosen in LWC, reduces the mass of the building thus decreasing the influence of lateral forces. However, LWC having a lesser modulus of elasticity has a more rapidly develops the cracks in the RC members. In this investigation, pumice is a naturally available material of volcanic source, has low density, which creates it ideal for production of LWC, likewise steel fibres are employed as an additive to enhance the energy absorption ability and to reduce the possibility of development of the cracks. In the present paper the structural behaviour of Lightweight RC framed structures realized by using steel fibres and subjected to lateral forces, In this study, four RC frames viz., F1-NWC (Control), F2- NWCF (with 1% Volume fraction (Vf) of steel fibres), F3-LWC (with 20% substitute of coarse aggregate instead of pumice aggregate) and F4-LWCF (with 20% substitute of coarse aggregate instead of pumice aggregate and 1% Vf of steel fibres) were casted and tested under in-plane horizontal loading, which are designed according to Indian Standard (IS) code IS 456 (2000). It was observed that the behaviour of F4-LWCF significantly better in comparison to other frames in various parameters such as load carrying capacity, displacement, ductility, stiffness and energy dissipation.


2018 ◽  
Vol 7 (1) ◽  
pp. 88-91
Author(s):  
M. Muthulakshmi . ◽  
M. Vinod Kumar .

Reinforced Concrete (RC) framed structure with masonry infill is the most common type of building in which, RC frames participate in resisting lateral forces. The poor performance of RC frame buildings under lateral forces is due to its heavy mass and rigid construction. Use of Lightweight concrete (LWC) is preferred since the dead load of concrete is enormous. A low density of the LWC, decreases the weight of the building thus reducing the effect of lateral forces. However, LWC having a lower modulus of elasticity, has a faster rate of crack development in RC members. So, fibres are employed as an additive to increase the energy absorption capacity and to control the crack development. Pumice is a natural material of volcanic origin, has low density, which makes it ideal for production of LWC. Based on these ideas, Pumice aggregate is used as a partial replacement of coarse aggregate to its volume with addition of steel fibres to the volume of concrete. This paper summarizes the collected literatures related to RC frames, LWC, Fibre Reinforced Concrete (FRC) and thereby attempts to predict the lateral load response of RC portal frame with the use of LWC and Steel fibres.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012076
Author(s):  
U.V. Koteswara Rao ◽  
Veerendrakumar C Khed

Abstract Lightweight concrete is the most popular type in constructional activities to get low density for the concrete just as to diminish the extra weight of the structure. There are different types of lightweight concrete based on the type of lightweight material used. As considering eco-friendly materials like waste tires, waste steel fibres, plastic waste, agricultural waste, waste glass can be utilized in concrete by replacing coarse aggregate and fine aggregate. Lightweight concrete is preferable in constructional activities because of its low warm conductivity and improves fire resistance. In general, lightweight concrete ranges from 1440 to 1840 kg/m3. The main aim is to conclude the high-performance lightweight concrete by using a different type of materials in the same way to achieve low density for the concrete. By this study, we understand that high performance can be achieved by adding steel fibres to improve ductility and for low-density waste tire rubber by partial replacement in coarse aggregate and to improve durability by adding bacillus subtilis JC3 crack formation can be reduced.


Ingeniería ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 237-249
Author(s):  
María Paula Espinoza-Merchán ◽  
Laura Juliana Torres-Parra ◽  
Nicolas Rojas-Arias ◽  
Pablo Miguel Coha-Vesga

Context: The high consumption of parts made from expanded polystyrene (EPS) generates environmental problems when disposed. Due to its low density and the low possibility of being utilized in other applications after its disposal, it is necessary to generate an alternative for the recovery and application of this type of waste. This work aims to generate an alternative in the application of EPS waste, particularly as a coarse aggregate in the manufacturing of lightweight concrete. Method: This study used discarded EPS containers as raw material. The material was cleaned, crushed and subsequently reduced in volume by applying acetone, generating pieces of polystyrene (R-PS) to be applied as a coarse aggregate for the manufacturing of lightweight concrete in different proportions. In addition, the pieces were subjected to a chemical attack process in order to observe their behavior. Results: The results show the degree of volume reduction of the EPS pieces by using different acetone ratios, establishing the best degree of reduction (in volume) of this material. Likewise, chemical attack tests show the behavior of R-PS against different agents in R-PS samples. Meanwhile, the failure tests on different concrete samples determine the best R-PS ratio as coarse aggregate for the manufacturing of lightweight concrete. Conclusions: The data obtained in this study show that the application of acetone on EPSW samples reduces its volume by up to 55 %. Concrete failure tests show that an optimum P-RS addition value, to be used as an aggregate in the manufacturing of lightweight concrete, is 7 %. This improves its resistance to chemical agents and weight reduction without significantly reducing the mechanical properties of concrete.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3835-3847
Author(s):  
K.I. Christidis ◽  
E.G. Badogiannis ◽  
C. Mintzoli

2021 ◽  
pp. 136943322199772
Author(s):  
Shao-Ge Cheng ◽  
Yi-Xiu Zhu ◽  
Wei-Ping Zhang

This study presents the shake-table tests of a 1/5-scaled RC frame retrofitted with RC infill walls. The intensity of input ground motions increased gradually to comprehensively evaluate the structural seismic behavior. We performed a comparison of the results from the RC frame with masonry walls and that with RC walls. The results showed that the presence of RC infills effectively improved the lateral structural stiffness and loading capacity of the frames and reduced their damage and story drift. RC walls acted as the first seismic line of defense, and their failure was dominated by bending failure and concentrated on the low stories. The displacement ductility of the structure decreased with increasing stiffness of the introducing infills.


2021 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Maria Nomikou ◽  
Vasileios Kaloidas ◽  
Christos Triantafyllos Galmpenis ◽  
Nicolaos Anagnostopoulos ◽  
Georgios Tzouvalas

Pumice quarried by LAVA MINING AND QUARRYING SA from Yali Island, Dodecanese, is used in domestic and foreign markets mainly as concrete lightweight aggregate, masonry unit constituents, road substrate, and loose soil stabilization. It is a porous natural volcanic rock with low density, low thermal and noise transmission, and the highest strength among all the natural or artificial lightweight materials of mineral origin. Nowadays, pumice is of additional interest as it has a reduced CO2 footprint because thermal energy is not needed for its expansion compared with the artificial lightweight aggregates. In this context, HERACLES GROUP in collaboration with Sika Hellas has launched a new product containing pumice stone under the brand name GUNITECH®. GUNITECH® is an innovative bagged material for spraying concrete applications. It is a ready lightweight concrete, for building repairs certified as EN 1504-3.


One of the main applications of the lumped damage mechanics or the damage mechanics of dual systems is the earthquake vulnerability assessment of structures. This means not only the consideration of the inertia forces but, mainly, the adequate description of crack propagation under general cyclic loading. Chapter 9 described the concept of unilateral damage (i.e. the appearance of distinct and independent sets of cracks after loading reversals). This phenomenon can also be observed in RC structures, and the models presented in Chapters 10 and 11 do not describe it; thus, they should be used only in the cases of mono sign loadings. The first goal of this chapter is the generalization of the damage models, including unilateral effects; the next one consists of the development of lumped damage models for tridimensional analysis of RC frames. Finally, some guidelines for the use of the damage models in industrial applications are presented.


2020 ◽  
Vol 7 ◽  
Author(s):  
Dingyi Xu ◽  
Zongping Chen ◽  
Chunheng Zhou

This study was conducted to experimentally investigate the behavior of recycled concrete-filled circular steel tube (RCFST) columns subjected to cyclic loading. Ten specimens were prepared and tested. Four parameters were used to characterize seismic behavior: the replacement percentage of recycled coarse aggregate, slenderness ratio, axial compression level, and steel ratio. A novel calculation method for the bearing capacity for RCFST columns is established. The failure processes and modes of RCFST columns are found to be similar to normal concrete-filled steel tube columns. Varying the replacement percentage of recycled coarse aggregate has little effect on the hysteresis curves of the RCFST columns. The RCFST columns also show seismic performance similar to that of concrete-filled steel tubes. The displacement ductility of all specimens is larger than 3.0 and the equivalent viscous damping coefficients corresponding to the ultimate load range from 0.305 to 0.460.


Sign in / Sign up

Export Citation Format

Share Document