scholarly journals Experimental Studies on Fibre Integrated Lightweight Concrete Frames Under Lateral Forces: A Review

2018 ◽  
Vol 7 (1) ◽  
pp. 88-91
Author(s):  
M. Muthulakshmi . ◽  
M. Vinod Kumar .

Reinforced Concrete (RC) framed structure with masonry infill is the most common type of building in which, RC frames participate in resisting lateral forces. The poor performance of RC frame buildings under lateral forces is due to its heavy mass and rigid construction. Use of Lightweight concrete (LWC) is preferred since the dead load of concrete is enormous. A low density of the LWC, decreases the weight of the building thus reducing the effect of lateral forces. However, LWC having a lower modulus of elasticity, has a faster rate of crack development in RC members. So, fibres are employed as an additive to increase the energy absorption capacity and to control the crack development. Pumice is a natural material of volcanic origin, has low density, which makes it ideal for production of LWC. Based on these ideas, Pumice aggregate is used as a partial replacement of coarse aggregate to its volume with addition of steel fibres to the volume of concrete. This paper summarizes the collected literatures related to RC frames, LWC, Fibre Reinforced Concrete (FRC) and thereby attempts to predict the lateral load response of RC portal frame with the use of LWC and Steel fibres.

Masonry infilled Reinforced Concrete (RC) framed structure is the utmost common kind of building in which, RC frames contribute in resisting lateral forces. Due to heavy mass and rigid construction, the RC framed buildings performs unfortunate under lateral forces. Practice of Lightweight concrete (LWC) is superlative because the dead load of concrete is massive. Low density materials are chosen in LWC, reduces the mass of the building thus decreasing the influence of lateral forces. However, LWC having a lesser modulus of elasticity has a more rapidly develops the cracks in the RC members. In this investigation, pumice is a naturally available material of volcanic source, has low density, which creates it ideal for production of LWC, likewise steel fibres are employed as an additive to enhance the energy absorption ability and to reduce the possibility of development of the cracks. In the present paper the structural behaviour of Lightweight RC framed structures realized by using steel fibres and subjected to lateral forces, In this study, four RC frames viz., F1-NWC (Control), F2- NWCF (with 1% Vf of steel fibres), F3-LWC (with 20% substitute of coarse aggregate instead of pumice aggregate) and F4-LWCF (with 20% substitute of coarse aggregate instead of pumice aggregate and 1% Vf of steel fibres) were casted and tested under in-plane horizontal loading, which are designed according to Indian Standard (IS) code IS 456 (2000). It was observed that the behaviour of F4-LWCF significantly better in comparison to other frames in various parameters such as load carrying capacity, displacement, ductility, stiffness and energy dissipation.


Masonry infilled Reinforced Concrete (RC) framed structure is the utmost common kind of building in which, RC frames contribute in resisting lateral forces. Due to heavy mass and rigid construction, the RC framed buildings performs unfortunate under lateral forces. Practice of Lightweight concrete (LWC) is superlative because the dead load of concrete is massive. Low density materials are chosen in LWC, reduces the mass of the building thus decreasing the influence of lateral forces. However, LWC having a lesser modulus of elasticity has a more rapidly develops the cracks in the RC members. In this investigation, pumice is a naturally available material of volcanic source, has low density, which creates it ideal for production of LWC, likewise steel fibres are employed as an additive to enhance the energy absorption ability and to reduce the possibility of development of the cracks. In the present paper the structural behaviour of Lightweight RC framed structures realized by using steel fibres and subjected to lateral forces, In this study, four RC frames viz., F1-NWC (Control), F2- NWCF (with 1% Volume fraction (Vf) of steel fibres), F3-LWC (with 20% substitute of coarse aggregate instead of pumice aggregate) and F4-LWCF (with 20% substitute of coarse aggregate instead of pumice aggregate and 1% Vf of steel fibres) were casted and tested under in-plane horizontal loading, which are designed according to Indian Standard (IS) code IS 456 (2000). It was observed that the behaviour of F4-LWCF significantly better in comparison to other frames in various parameters such as load carrying capacity, displacement, ductility, stiffness and energy dissipation.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012076
Author(s):  
U.V. Koteswara Rao ◽  
Veerendrakumar C Khed

Abstract Lightweight concrete is the most popular type in constructional activities to get low density for the concrete just as to diminish the extra weight of the structure. There are different types of lightweight concrete based on the type of lightweight material used. As considering eco-friendly materials like waste tires, waste steel fibres, plastic waste, agricultural waste, waste glass can be utilized in concrete by replacing coarse aggregate and fine aggregate. Lightweight concrete is preferable in constructional activities because of its low warm conductivity and improves fire resistance. In general, lightweight concrete ranges from 1440 to 1840 kg/m3. The main aim is to conclude the high-performance lightweight concrete by using a different type of materials in the same way to achieve low density for the concrete. By this study, we understand that high performance can be achieved by adding steel fibres to improve ductility and for low-density waste tire rubber by partial replacement in coarse aggregate and to improve durability by adding bacillus subtilis JC3 crack formation can be reduced.


Author(s):  
Ana Caroline Da Costa Santos ◽  
Paul Archbold

Fibre-reinforced concrete (FRC) is widely employed in the construction industry, with assorted fibre types being used for different applications. Typically, steel fibres give additional tensile strength to the mixture, while flexible fibres may be used in large sections, such as floor slabs, to control crack width and to improve the handling ability of precast sections. For many reasons, including durability concerns, environmental impact, thermal performance, etc, alternatives to the currently available fibres are being sought. This study examines the potential of using basalt fibres, a mineral and natural material, as reinforcement of concrete sections in comparison to steel fibres and plain concrete mix. Mixes were tested containing 0.5% and 1.0% of basalt fibres measuring 25mm length, 0.5% of the same material with 48mm length and steel fibres measuring 50mm by 0.05%, 0.1%, 0.15% and 0.2% of the concrete volume. For the mechanical performance analysis, the 3-point bending test was led and the fracture energy, Young’s modulus and tensile strength in different moments of the tests were calculated. When compared to the control mixtures and the steel-fibre-reinforced concrete, the mixes containing basalt had a reduction in their elastic modulus, representing a decrease in the concrete brittleness. At the same time, the fracture energy of the mixtures was significantly increased with the basalt fibres in both lengths. Finally, the flexural strength was also higher for the natural fibre reinforced concrete than for the plain concrete and comparable to the results obtained with the addition of steel fibres by 0.15%.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3835-3847
Author(s):  
K.I. Christidis ◽  
E.G. Badogiannis ◽  
C. Mintzoli

2021 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Maria Nomikou ◽  
Vasileios Kaloidas ◽  
Christos Triantafyllos Galmpenis ◽  
Nicolaos Anagnostopoulos ◽  
Georgios Tzouvalas

Pumice quarried by LAVA MINING AND QUARRYING SA from Yali Island, Dodecanese, is used in domestic and foreign markets mainly as concrete lightweight aggregate, masonry unit constituents, road substrate, and loose soil stabilization. It is a porous natural volcanic rock with low density, low thermal and noise transmission, and the highest strength among all the natural or artificial lightweight materials of mineral origin. Nowadays, pumice is of additional interest as it has a reduced CO2 footprint because thermal energy is not needed for its expansion compared with the artificial lightweight aggregates. In this context, HERACLES GROUP in collaboration with Sika Hellas has launched a new product containing pumice stone under the brand name GUNITECH®. GUNITECH® is an innovative bagged material for spraying concrete applications. It is a ready lightweight concrete, for building repairs certified as EN 1504-3.


Author(s):  
Annette Beedholm Rasmussen ◽  
Bjarke Würtz Sørensen ◽  
Mikkel Skov ◽  
Peter Kolt Rasmussen ◽  
Lars Germa Hagsten

Sign in / Sign up

Export Citation Format

Share Document