scholarly journals Electrical Properties of PVA:PVP:PEG based Blend Polymer Electrolytes

This is a novel approach to get polyblend films with improved properties such as ionic conductivity and dielectric strength. Different ratios of PEG (5%, 10%, 15%, 20%, 25%, 30%) are added with optimized PVA: PVP ratio. PVA: PVP: PEG based BPEs are prepared by using solution casting method. The polymer PEG act as a plasticizer and chemically stable in air.The prepared electrolytes are characterized by XRD, FTIR and ionic conductivity studies. The XRD analysis shows amorphous nature of the polyblend electrolytes. Dielectric analysis is carried out for the BPEs. The higher conductivity is obtained for 20% PEG added polyblend electrolytes and it is 9.0x10-9 S/Cm. Thus, PVA: PVP: PEG (40:40:20) system is confirmed as optimized one for further studies to enhance the ionic conductivity

Author(s):  
A.S.A Khiar ◽  
S. Mat Radzi ◽  
N. Abd Razak

Lauroyl-chitosan/poly(methylmethacrylate)-lithium trifluorosulfonate (LiCF3SO3) polymer electrolytes has been prepared by the solution casting method. Ionic conductivity analysis was conducted over a wide range of frequency between 50 Hz-1 MHz using impedance spectroscopy to evaluate the dielectric properties and conductivity of the sample. Sample with 30 wt% of LiCF3SO3 showed the highest conductivity of 7.59 ± 3.64 x 10-4 Scm-1 at room temperature. Complex permittivity for real (εr), imaginary (εi) and electrical modulus for real (Mr) and imaginary (Mi) part was determined and plotted. The relaxation time, τ for these samples was determined and the plot shows that τ decreases with conductivity of the complexes.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3357
Author(s):  
N. I. Ali ◽  
S. Z. Z. Abidin ◽  
S. R. Majid ◽  
N. K. Jaafar

Polymer electrolytes based on agarose dissolved in DMSO solvent complexed with different weight percentages of Mg(NO3)2 ranging from 0 to 35 wt% were prepared using a solution casting method. Electrochemical impedance spectroscopy (EIS) was applied to study the electrical properties of this polymer electrolyte, such as ionic conductivity at room and different temperatures, dielectric and modulus properties. The highest conducting film has been obtained at 1.48 × 10−5 S·cm−1 by doping 30 wt% of Mg(NO3)2 into the polymer matrix at room temperature. This high ionic conductivity value is achieved due to the increase in the amorphous nature of the polymer electrolyte, as proven by X-ray diffractometry (XRD), where broadening of the amorphous peak can be observed. The intermolecular interactions between agarose and Mg(NO3)2 are studied by Fourier transform infrared (FTIR) spectroscopy by observing the presence of –OH, –CH, N–H, CH3, C–O–C, C–OH, C–C and 3,6-anhydrogalactose bridges in the FTIR spectra. The electrochemical properties for the highest conducting agarose–Mg(NO3)2 polymer electrolyte are stable up to 3.57 V, which is determined by using linear sweep voltammetry (LSV) and supported by cyclic voltammetry (CV) that proves the presence of Mg2+ conduction.


2015 ◽  
Vol 1107 ◽  
pp. 247-252 ◽  
Author(s):  
Nur Hidayah Ahmad ◽  
M.I.N. Isa

The present study aims to investigate the structural and ionic conductivity of carboxymethyl cellulose - ammonium chloride as proton conducting polymer electrolytes. The complexion of polymer electrolyte films has been confirmed via FTIR studies. The conductivity enhancement with the addition of ammonium chloride concentration was proved due to the increase in amorphous nature of the films as evidenced by XRD analysis. Impedance studies indicate that the highest ionic conductivity of 1.43 x 10-3 Scm-1 was observed with the addition of 16 wt.% ammonium chloride in polymer electrolyte system obtained at ambient temperature.


2012 ◽  
Vol 501 ◽  
pp. 29-33 ◽  
Author(s):  
Narges Ataollahi ◽  
Azizan Ahmad ◽  
H. Hamzah ◽  
M.Y.A. Rahman ◽  
Mohamed Nor Sabirin

Blend-based polymer electrolytes composed of PVDF-HFP/MG-49 (70/30) and LiClO4 as lithium salt has been studied. Solution casting method was applied to prepare the polymer electrolyte. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the electrolyte films. The maximum value of 2.51×10ˉ6 S cm-1 was obtained at ambient temperature for the 30 wt. % of LiClO4 and the conductivity increased to 1.10×10ˉ3 S cm-1 by increasing the temperature up to 383 K. FTIR spectra demonstrated that complexation occurred between the polymers and lithium salt.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


2021 ◽  
Vol 317 ◽  
pp. 426-433
Author(s):  
Siti Nurhaziqah Abd Majid ◽  
Afiqah Qayyum Ishak ◽  
Nik Aziz Nik Ali ◽  
Muhamad Zalani Daud ◽  
Hasiah Salleh

The development of biopolymer electrolytes based on methylcellulose (MC) has been accomplished by incorporating ammonium bromide (NB) to the polymer-salt system. The biopolymer electrolytes were prepared via solution-casting method. The conductivity and permittivity characteristics of the material were studied. The biopolymer-salt complex formation have been analysed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The conductivity of the sample was measured by EIS HIOKI. Upon addition of 20 wt.% of NB, highest conductivity of 3.25×10-4 μScm-1 was achieved at ambient temperature. The temperature dependence of the biopolymer electrolytes exhibit Arrhenius behaviour. This result had been further proven in FTIR study.


Sign in / Sign up

Export Citation Format

Share Document