scholarly journals Feature-Based Stereo Vision Relative Positioning Strategy for Formation Control of Unmanned Aerial Vehicles

As inspired by birds flying in flocks, their vision is one of the most critical components to enable them to respond to their neighbor’s motion. In this paper, a novel approach in developing a Vision System as the primary sensor for relative positioning in flight formation of a Leader-Follower scenario is introduced. To use the system in real-time and on-board of the unmanned aerial vehicles (UAVs) with up to 1.5 kilograms of payload capacity, few computing platforms are reviewed and evaluated. The study shows that the NVIDIA Jetson TX1 is the most suited platform for this project. In addition, several different techniques and approaches for developing the algorithm is discussed as well. As per system requirements and conducted study, the algorithm that is developed for this Vision System is based on Tracking and On-Line Machine Learning approach. Flight test has been performed to check the accuracy and reliability of the system, and the results indicate the minimum accuracy of 83% of the vision system against ground truth data.

Author(s):  
L. Pádua ◽  
T. Adão ◽  
N. Guimarães ◽  
A. Sousa ◽  
E. Peres ◽  
...  

<p><strong>Abstract.</strong> In recent years unmanned aerial vehicles (UAVs) have been used in several applications and research studies related to environmental monitoring. The works performed have demonstrated the suitability of UAVs to be employed in different scenarios, taking advantage of its capacity to acquire high-resolution data from different sensing payloads, in a timely and flexible manner. In forestry ecosystems, UAVs can be used with accuracies comparable with traditional methods to retrieve different forest properties, to monitor forest disturbances and to support disaster monitoring in fire and post-fire scenarios. In this study an area recently affected by a wildfire was surveyed using two UAVs to acquire multi-spectral data and RGB imagery at different resolutions. By analysing the surveyed area, it was possible to detect trees, that were able to survive to the fire. By comparing the ground-truth data and the measurements estimated from the UAV-imagery, it was found a positive correlation between burned height and a high correlation for tree height. The mean NDVI value was extracted used to create a three classes map. Higher NDVI values were mostly located in trees that survived that were not/barely affected by the fire. The results achieved by this study reiterate the effectiveness of UAVs to be used as a timely, efficient and cost-effective data acquisition tool, helping for forestry management planning and for monitoring forest rehabilitation in post-fire scenarios.</p>


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 391
Author(s):  
Luca Bigazzi ◽  
Stefano Gherardini ◽  
Giacomo Innocenti ◽  
Michele Basso

In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2221 ◽  
Author(s):  
Myeong-hwan Hwang ◽  
Hyun-Rok Cha ◽  
Sung Yong Jung

The practically applicable endurance estimation method for multirotor unmanned aerial vehicles (UAVs) using a battery as a power source is proposed. The method considers both hovering and steady-level flights. The endurance, thrust, efficiency, and battery discharge are determined with generally available data from the manufacturer. The effects of the drag coefficient related to vehicle shape and payload weight are examined at various forward flight speeds. As the drag coefficient increases, the optimum speed at the minimum required power and the maximum endurance are reduced. However, the payload weight causes an opposite effect, and the optimal flying speed increases with an increase in the payload weight. For more practical applications for common users, the value of S × Cd is determined from a preliminary flight test. Given this value, the endurance is numerically estimated and validated with the measured flight time. The proposed method can successfully estimate the flight time with an average error of 2.3%. This method would be useful for designers who plan various missions and select UAVs.


Drones ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 36 ◽  
Author(s):  
Vassilios Krassanakis ◽  
Matthieu Perreira Da Silva ◽  
Vincent Ricordel

The present article describes an experimental study towards the examination of human visual behavior during the observation of unmanned aerial vehicles (UAVs) videos. Experimental performance is based on the collection and the quantitative & qualitative analysis of eye tracking data. The results highlight that UAV flight altitude serves as a dominant specification that affects the visual attention process, while the presence of sky in the video background seems to be the less affecting factor in this procedure. Additionally, the main surrounding environment, the main size of the observed object as well as the main perceived angle between UAV’s flight plain and ground appear to have an equivalent influence in observers’ visual reaction during the exploration of such stimuli. Moreover, the provided heatmap visualizations indicate the most salient locations in the used UAVs videos. All produced data (raw gaze data, fixation and saccade events, and heatmap visualizations) are freely distributed to the scientific community as a new dataset (EyeTrackUAV) that can be served as an objective ground truth in future studies.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 91
Author(s):  
Jared Schenkel ◽  
Paul Taele ◽  
Daniel Goldberg ◽  
Jennifer Horney ◽  
Tracy Hammond

Human ecology has played an essential role in the spread of mosquito-borne diseases. With standing water as a significant factor contributing to mosquito breeding, artificial containers disposed of as trash—which are capable of holding standing water—provide suitable environments for mosquito larvae to develop. The development of these larvae further contributes to the possibility for local transmission of mosquito-borne diseases in urban areas such as Zika virus. One potential solution to address this issue involves leveraging unmanned aerial vehicles that are already systematically becoming more utilized in the field of geospatial technology. With higher pixel resolution in comparison to satellite imagery, as well as having the ability to update spatial data more frequently, we are interested in investigating the feasibility of unmanned aerial vehicles as a potential technology for efficiently mapping potential breeding grounds. Therefore, we conducted a comparative study that evaluated the performance of an unmanned aerial vehicle for identifying artificial containers to that of conventionally utilized GPS receivers. The study was designed to better inform researchers on the current viability of such devices for locating a potential factor (i.e., small form factor artificial containers that can host mosquito breeding grounds) in the local transmission of mosquito-borne diseases. By assessing the performance of an unmanned aerial vehicle against ground-truth global position system technology, we can determine the effectiveness of unmanned aerial vehicles on this problem through our selected metrics of: timeliness, sensitivity, and specificity. For the study, we investigated these effectiveness metrics between the two technologies of interest in surveying a study area: unmanned aerial vehicles (i.e., DJI Phantom 3 Standard) and global position system-based receivers (i.e., Garmin GPSMAP 76Cx and the Garmin GPSMAP 78). We first conducted a design study with nine external participants, who collected 678 waypoint data and 214 aerial images from commercial GPS receivers and UAV, respectively. The participants then processed these data with professional mapping software for visually identifying and spatially marking artificial containers between the aerial imagery and the ground truth GPS data, respectively. From applying statistical methods (i.e., two-tailed, paired t-test) on the participants’ data for comparing how the two technologies performed against each other, our data analysis revealed that the GPS method performed better than the UAV method for the study task of identifying the target small form factor artificial containers.


2019 ◽  
Vol 13 (3) ◽  
pp. 3580-3589 ◽  
Author(s):  
Jonathan Lwowski ◽  
Abhijit Majumdar ◽  
Patrick Benavidez ◽  
John J. Prevost ◽  
Mo Jamshidi

2019 ◽  
Vol 42 (5) ◽  
pp. 942-950
Author(s):  
Kai Chang ◽  
Dailiang Ma ◽  
Xingbin Han ◽  
Ning Liu ◽  
Pengpeng Zhao

This paper presents a formation control method to solve the moving target tracking problem for a swarm of unmanned aerial vehicles (UAVs). The formation is achieved by the artificial potential field with both attractive and repulsive forces, and each UAV in the swarm will be driven into a leader-centered spherical surface. The leader is controlled by the attractive force by the moving target, while the Lyapunov vectors drive the leader UAV to a fly-around circle of the target. Furthermore, the rotational vector-based potential field is applied to achieve the obstacle avoidance of UAVs with smooth trajectories and avoid the local optima problem. The efficiency of the developed control scheme is verified by numerical simulations in four scenarios.


Sign in / Sign up

Export Citation Format

Share Document