scholarly journals AIoT with PUF: A Concrete Security

Artificial Intelligence in contrast to Natural Intelligence also known as Machine Intelligence is intelligence revealed by machine. It is the science and engineering of making machines intelligent. Therefore, it is a technique that makes a machine work like humans. The IOT Internet of Things is a network of internet-connected objects which can connect and exchange data. The combination of AI and IoT called AIoT is the combination of Artificial Intelligence and Internet of Things to achieve more efficient IoT operations. When Artificial Intelligence is added to IoT it means that the devices can analyze data and make decisions and act accordingly without the intervention of humans. The combination of AI and IOT has several advantages like saving money, building deeper customer relationships, increased operational efficiency and productivity and enhanced security and safety. This research paper focuses on what is AIoT, its applications and challenges and further, it also focuses on AIoT security concern and how can we solve the security problem with the use of PUF which is hardware security which is a simple and fast solution for security purpose. PUF is also more compatible with AIoT gadgets. Attacks on IoT devices are on the upsurge. Physical Unclonable functions (PUFs) are recognized as a robust and mild-weight way for AIoT

Subject IoT ecosystem. Significance The market for the Internet of Things (IoT) or connected devices is expanding rapidly, with no manufacturer currently forecast to dominate the supply chain. This has fragmented the emerging IoT ecosystem, triggering questions about interoperability and cybersecurity of IoT devices. Impacts Firms in manufacturing, transportation and logistics and utilities are expected to see the highest IoT spending in coming years. The pace of IoT adoption is inextricably linked to that of related technologies such as 5G, artificial intelligence and cloud computing. Data privacy and security will be the greatest constraint to IoT adoption.


2022 ◽  
pp. 132-148
Author(s):  
Kiran M. B. ◽  
Martin George Wynn

The Internet of Things (IoT) is formed by a set of physical objects with embedded sensors, connected using a network so that they can collect and exchange data. Though the concept looks simple, its deployment in industry has enormous potential to bring major business benefits and radical change. This chapter examines IoT technology and how it is being used in the corporate environment. Based on a review of existing literature and case examples, the various definitions and elements of IoT are discussed, followed by an assessment of how IoT is being used and what benefits are being delivered. Some key emergent themes are then examined – security aspects, the significance of 5G networks, and the need for an IoT strategy and project implementation guidelines. The chapter concludes by outlining possible areas for future research and suggests a step-change in the mega-infrastructure connecting IoT devices is imminent.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3208 ◽  
Author(s):  
Armin Babaei ◽  
Gregor Schiele

Attacks on Internet of Things (IoT) devices are on the rise. Physical Unclonable Functions (PUFs) are proposed as a robust and lightweight solution to secure IoT devices. The main advantage of a PUF compared to the current classical cryptographic solutions is its compatibility with IoT devices with limited computational resources. In this paper, we investigate the maturity of this technology and the challenges toward PUF utilization in IoT that still need to be addressed.


Author(s):  
Ravdeep Kour

The convergence of information technology (IT) and operational technology (OT) and the associated paradigm shift toward fourth industrial revolution (aka Industry 4.0) in companies has brought tremendous changes in technology vision with innovative technologies such as robotics, big data, cloud computing, online monitoring, internet of things (IoT), cyber-physical systems (CPS), cognitive computing, and artificial intelligence (AI). However, this transition towards the fourth industrial revolution has many benefits in productivity, efficiency, revenues, customer experience, and profitability, but also imposes many challenges. One of the challenges is to manage and secure large amount of data generated from internet of things (IoT) devices that provide many entry points for hackers in the form of a threat to exploit new and existing vulnerabilities within the network. This chapter investigates various cybersecurity issues and challenges in Industry 4.0 with more focus on three industrial case studies.


2021 ◽  
Author(s):  
NAGAJAYANTHI BOOBALAKRISHNAN

Abstract Internet connects people to people, people to machine, and machine to machine for a life of serendipity through a Cloud. Internet of Things networks objects or people and integrates them with software to collect and exchange data. The Internet of things (IoT) influences our lives based on how we ruminate, respond, and anticipate. IoT 2020 heralds from the fringes to the data ecosystem and panaches a comfort zone. IoT is overwhelmingly embraced by businessmen and consumers due to increased productivity and convenience. Internet of Things facilitates intelligent device control with cloud vendors like Amazon and Google using artificial intelligence for data analytics, and with digital assistants like Alexa and Siri providing a voice user interface. Smart IoT is all about duplex connecting, processing, and implementing. With 5G, lightning faster rate of streaming analytics is realistic. An amalgamation of technologies has led to this techno-industrial IoT revolution. Centralized IoT architecture is vulnerable to cyber-attacks. With Block Chain, it is possible to maintain transparency and security of the transaction's data. Standardization of IoT devices is achievable with limited vendors based on Platform, Connectivity, and Application. Robotic Process Automation (RPA) using bots has automated laborious tasks in 2019. Embedded Internet using Facial Recognition could reduce the pandemic crisis. Security concerns are addressed with micro-segmentation approaches. IoT, an incredible vision of the future makes systems adaptive with customized features, responsive with increased efficiency, and procurable with optimized cost. This paper delivers a comprehensive insight into the technical perspectives of IoT, focusing on interoperability, flexibility, scalability, mobility, security, transparency, standardization, and low energy.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 352 ◽  
Author(s):  
An Braeken

Key agreement between two constrained Internet of Things (IoT) devices that have not met each other is an essential feature to provide in order to establish trust among its users. Physical Unclonable Functions (PUFs) on a device represent a low cost primitive exploiting the unique random patterns in the device and have been already applied in a multitude of applications for secure key generation and key agreement in order to avoid an attacker to take over the identity of a tampered device, whose key material has been extracted. This paper shows that the key agreement scheme of a recently proposed PUF based protocol, presented by Chatterjee et al., for Internet of Things (IoT) is vulnerable for man-in-the-middle, impersonation, and replay attacks in the Yao–Dolev security model. We propose an alternative scheme, which is able to solve these issues and can provide in addition a more efficient key agreement and subsequently a communication phase between two IoT devices connected to the same authentication server. The scheme also offers identity based authentication and repudiation, when only using elliptic curve multiplications and additions, instead of the compute intensive pairing operations.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2647
Author(s):  
Stefan Balogh ◽  
Ondrej Gallo ◽  
Roderik Ploszek ◽  
Peter Špaček ◽  
Pavol Zajac

Internet of Things connects the physical and cybernetic world. As such, security issues of IoT devices are especially damaging and need to be addressed. In this treatise, we overview current security issues of IoT with the perspective of future threats. We identify three main trends that need to be specifically addressed: security issues of the integration of IoT with cloud and blockchains, the rapid changes in cryptography due to quantum computing, and finally the rise of artificial intelligence and evolution methods in the scope of security of IoT. We give an overview of the identified threats and propose solutions for securing the IoT in the future.


2020 ◽  
Author(s):  
Dhouha Ben Noureddine ◽  
Moez Krichen ◽  
Seifeddine Mechti ◽  
Tarik Nahhal ◽  
Wilfried Yves Hamilton Adoni

Internet of Things (IoT) is composed of many IoT devices connected throughout the Internet, that collect and share information to represent the environment. IoT is currently restructuring the actual manufacturing to smart manufacturing. However, inherent characteristics of IoT lead to a number of titanic challenges such as decentralization, weak interoperability, security, etc. The artificial intelligence provides opportunities to address IoT’s challenges, e.g the agent technology. This paper presents first an overview of ML and discusses some related work. Then, we briefly present the classic IoT architecture. Then we introduce our proposed Intelligent IoT (IIoT) architecture. We next concentrate on introducing the approach using multi-agent DRL in IIoT. Finally, in this promising field, we outline the open directions of future work.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 833 ◽  
Author(s):  
Ingook Jang ◽  
Donghun Lee ◽  
Jinchul Choi ◽  
Youngsung Son

The traditional Internet of Things (IoT) paradigm has evolved towards intelligent IoT applications which exploit knowledge produced by IoT devices using artificial intelligence techniques. Knowledge sharing between IoT devices is a challenging issue in this trend. In this paper, we propose a Knowledge of Things (KoT) framework which enables sharing self-taught knowledge between IoT devices which require similar or identical knowledge without help from the cloud. The proposed KoT framework allows an IoT device to effectively produce, cumulate, and share its self-taught knowledge with other devices at the edge in the vicinity. This framework can alleviate behavioral repetition in users and computational redundancy in systems in intelligent IoT applications. To demonstrate the feasibility of the proposed concept, we examine a smart home case study and build a prototype of the KoT framework-based smart home system. Experimental results show that the proposed KoT framework reduces the response time to use intelligent IoT devices from a user’s perspective and the power consumption for compuation from a system’s perspective.


Author(s):  
Alper Kamil Demir ◽  
Shahid Alam

Internet of things (IoT) has revolutionized digital transformation and is present in every sector including transportation, energy, retail, healthcare, agriculture, etc. While stepping into the new digital transformation, these sectors must contemplate the risks involved. The new wave of cyberattacks against IoT is posing a severe impediment in adopting this leading-edge technology. Artificial intelligence (AI) is playing a key role in preventing and mitigating some of the effects of these cyberattacks. This chapter discusses different types of threats and attacks against IoT devices and how AI is enabling the detection and prevention of these cyberattacks. It also presents some challenges faced by AI-enabled detection and prevention and provides some solutions and recommendations to these challenges. The authors believe that this chapter provides a favorable basis for the readers who intend to know more about AI-enabled technologies to detect and prevent cyberattacks against IoT and the motivation to advance the current research in this area.


Sign in / Sign up

Export Citation Format

Share Document