scholarly journals An Experimental Research On Partial Replacement Of Coarse Aggregate with Recycled Aggregate and Fine Aggregate with Granite Powder

Now a days increase in population increases the demand of concrete for construction purpose and Aggregates are the important constituents in concrete.Re-use of demoliation waste avoids the problem of waste disposal and is also helpful in reducing the gap between demand and supply of fresh aggregates. This research deals with partial replacement of natural coarse aggregates (NCA) with recycled coarse aggregates (RCA) of age group 30 years and 35 years in different proportions like 20%, 30%, 40% . For this, M20 grade of concrete is adopted. Curing of specimens were done for 7days and 28 days to attain the maximum strengths. Partial replacement of fine aggregate with Granite powder at 5%, 10%, 15% were done to reduce the waste percentage as well to gain more strength. After casting the specimens of RCA with Granite powder replacement, curing was done and the specimens were tested for compressive and tensile strengths. Obtained results of compressive and tensile strengths of RCA concrete mix were compared with conventional concrete. In this direction, an experimental investigation of compressive and tensile strength was undertaken to use RCA as a partial replacement in concrete. It was observed that the concrete with recycled aggregates of 30years and 35years age group achieved maximum compressive strength of 29.03 N/mm2 , 28.96 N/mm2 and tensile strength of 11.91 N/mm2 , 10.34 N/mm2 were obtained at 40%replacement of RCA respectively. It is found that the compressive strength and Split tensile strength of RAC with copper slag was increased 8.20% and 2.90% when compared with the RAC.

2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


2021 ◽  
Vol 11 (13) ◽  
pp. 6028
Author(s):  
P. Jagadesh ◽  
Andrés Juan-Valdés ◽  
M. Ignacio Guerra-Romero ◽  
Julia M. Morán-del Morán-del Pozo ◽  
Julia García-González ◽  
...  

One of the prime objectives of this review is to understand the role of design parameters on the mechanical properties (Compressive and split tensile strength) of Self-Compacting Concrete (SCC) with recycled aggregates (Recycled Coarse Aggregates (RCA) and Recycled Fine Aggregates (RFA)). The design parameters considered for review are Water to Cement (W/C) ratio, Water to Binder (W/B) ratio, Total Aggregates to Cement (TA/C) ratio, Fine Aggregate to Coarse Aggregate (FA/CA) ratio, Water to Solid (W/S) ratio in percentage, superplasticizer (SP) content (kg/cu.m), replacement percentage of RCA, and replacement percentage of RFA. It is observed that with respect to different grades of SCC, designed parameters affect the mechanical properties of SCC with recycled aggregates.


2019 ◽  
Vol 8 (4) ◽  
pp. 3516-3519

The rapid growth of the population leads to a requirement of infrastructure this leads to scarcity of raw material for construction such as cement and sand. The other hand pollution growing due to thermal power plants, granite polishing unit and plastic waste this need to be removed. This gives an idea of using this compound as a raw material in concrete making. This concept found to effective minimizes disposal of fly, granite power and plastic wastes, and leads towards Green Building Concepts. In this investigation of M25 grade normal concrete is made by cement, sand, and aggregate which is tested and compared by special concrete. The concrete mix is prepared as per 10262 -2019 by adding replacing small amount of Fly ash in place of cement OPC 53 grade, and fine aggregate is prepared by partial replacing with granite powder (0%,10%,20%,30%)and another mix is prepared by adding 0.5 nylon fiber, partial replacement of fine aggregate with granite powder (0%,10%,20%,30%)specimens are casted . The casted specimens are tested for split tensile strength and compressive strength 7, 14 and 28 day’s respectively and these results also compared with each other. I t is observed that compressive strength and split tensile of concrete at 28days of curing show max value when compared with normal concrete. When the percentage of granite powder increases to 30% it shows that a decrease in both split tensile strength of concrete and compressive strength. When we added fiber to the concrete there is an increase in compressive strength and split tensile strength but there is a not much increase in compressive strength but increase in split tensile strength


2021 ◽  
Vol 889 (1) ◽  
pp. 012044
Author(s):  
Hemant ◽  
Rachit Sharma ◽  
Ankush Thakur ◽  
Tiwary Kumar Aditya

Abstract The potential of construction waste as an alternative to the constituents of concrete has been generally examined to demonstrate their utility and ensure the climate and/or environment of its otherwise ill effects. The mechanical characteristics of concrete are investigated to comprehend its behaviour under compressive, tensile, and flexural loads. This experimental study investigates the effect of supplanting proportions of river aggregates with waste coarse aggregates in addition to the effect of basalt fiber additions on concrete mixes with (25 and 50%) substitutions of recycled waste coarse aggregates (RWCA). The workability of concrete mixes was negatively affected with recycled aggregates and/or basalt fiber inclusions. Using recycled aggregates with 25 and 50% replacements decreases the strength of concrete. On utilizing discrete proportions of basalt fiber with natural coarse aggregates, the strength was higher as compared to control mix however increasing the percentage of basalt fiber from 1% to 3% the compressive strength was reduced. On incorporating additions of basalt fiber with different proportions of RWCA, the strength of concrete was deteriorated as the percentage of fiber was increasing. For natural aggregates, the inclusion of fibers has negative effect on compressive strength however the tensile strength was increased with higher percentage of fibers. The inclusions of fibers to 25% recycled aggregate mixes, split tensile strength was much higher as compared to control mix. It was concluded that addition of basalt fibers provides a viable option to recycle recycled aggregate in concrete production.


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


2011 ◽  
Vol 368-373 ◽  
pp. 2185-2188
Author(s):  
Ping Hua Zhu ◽  
Xin Jie Wang ◽  
Jin Cai Feng

The properties of recycled coarsee aggregates from repeatedly recycling waste concrete were determined. In this study, five series of concrete mixtures using coarse and fine natural aggregates were prepared, which have the same objective slump value from 35mm to 50mm and different compressive strengths ranging from 25MPa to 60 MPa. These five concretes were crushed, sieved, washed with water, hot treatmented at 300°C before they were used as recycled aggregates. After that, recycled aggregate concrete (RAC) was produced with an objectively compressive strength of 30MPa, in which the recycled coarse aggregate was used as 30%, 70% and 90% replacements of natural coarse aggregate and recycled fine aggregate as 10%, 20%, and 30% replacements of natural fine aggregate. After that, these recycled concretes were used as second recycled aggregates to produce RAC with the same objectively compressive strength of 30MPa. The physical properties of coarse aggregates including apparent density, water absorption, attached mortar content and crushing value were tested and their mineral characteristics were analyzed. The results showed that the quality of recycled coarse aggregates from twicely recycling waste concrete reached the requirements from structural concrete.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3480
Author(s):  
Rebeca Martínez-García ◽  
P. Jagadesh ◽  
Gabriel Búrdalo-Salcedo ◽  
Covadonga Palencia ◽  
María Fernández-Raga ◽  
...  

Most concrete studies are concentrated on mechanical properties especially strength properties either directly or indirectly (fresh and durability properties). Hence, the ratio of split tensile strength to compressive strength plays a vital role in defining the concrete properties. In this review, the impact of design parameters on the strength ratio of various grades of Self-Compacting Concrete (SCC) with recycled aggregate is assessed. The design parameters considered for the study are Water to Cement (W/C) ratio, Water to Binder (W/B) ratio, Total Aggregates to Cement (TA/C) ratio, Fine Aggregate to Coarse Aggregate (FA/CA) ratio, Water to Solid (W/S) ratio in percentage, superplasticizer (SP) content (kg/cu.m), replacement percentage of recycled coarse aggregates (RCA), replacement percentage of recycled fine aggregates (RFA), fresh density and loading area of the specimen. It is observed that the strength ratio of SCC with recycled aggregates is affected by design parameters.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


Demolition waste increasing day by day. The old damaged building materials can be used in present buildings or other construction works. Especially the recycled aggregates are useful to the concrete structures. The experimental studies on the use of recycled coarse aggregate has been going on for many countries. This publication focuses on the relationship between the shear capacity and the flexural cracking load of reinforced recycled concrete beams with stirrups, this experimental Inspection with partial replacement of natural coarse aggregates (NAC) with recycled coarse aggregates (RAC) at different ages as 10, 20 and 30 years in various proportions as 20 per cent, 30 per cent, 40 per cent. For this, M30 grade of concrete is consider. Curing of specimens were done for 7 day and 28 days to conclude the maximum strengths. The obtained results of concrete with partial replacement of recycled aggregates of 10,20and 30 years age group conclude maximum compressive strength of 35.84 N/mm2 at 40% replacement of NCA with RCA of age group (10 years) and 34.12 N/mm2 at 30% replacement of NCA whit RCA of (20 years) age group and 36.14 N/mm2 20% replacement of NCA with RCA of age group (30 years). After the compressive strength, beam specimens were casted for 7day and 28 days. Based on test results of 8 beams, the relationship between the cracking load that causes a beam to crack in the middle of the shear span and the beam's shear capacity is confident. All beams are reinforced in the longitudinal direction only and only tested under two-point loading conditions. The average analytical cracking load ratio is 0.60.the mid-shear span at cracking load (Vcr-a/2) in comparison with the observed shear capacity (Vexp). The analytical cracking load ratio. The analytical cracking’s load was used in this exploration as it is more reliable than the observed cracking load. At mid-span, the shear capacity of most of the beams was shown to be 50%. The average shear capacity ratio to the related test crack load in the center of the shear span 0.43. The analysis showed that cracking loads are strongly related to the shear capacity of the members. This relationship can be used to develop recycled reinforced beam members ' shear design process.


Sign in / Sign up

Export Citation Format

Share Document