scholarly journals ANN Based Improved Regenerative Braking System on PV/Battery Powered Electric Vehicles with Single Stage Interaction Converter

Hybrid features batteriesand photovoltaic (PV) module located on the roof of electric Vehicles (EV) can be effectively used by a single stage interaction converter (SSIC). SSIC is introduced for directing the energy flow amid the PV panel, battery and BLDC machine.In this paper a novel braking system is used for charing electrical vehicles using solar battery system (PV) integrated with BLDC motor. It is called as RBS (Regenerative Braking System). During the RB process, generator function is provided by BLDC motor. In order to boost the BLDC-Back-EMF, a suitable switching algorithm is used. By boosting the inverter and SSIC converter the DC-Link voltage reference is reduced to charge the battery. It increases the efficiency of the RB system. In this paper Aritifical Neural Network is used to provide a smooth and reliable brake with distributed force. This proposed BLDC-Back-EMF is experimented in MATLAB Simulink software and the results are verified. Speed, Breaking-Force, torque and front-RB force, rearmeachnical-RB force and other voltage, power are verified.

2011 ◽  
Vol 121-126 ◽  
pp. 3406-3410 ◽  
Author(s):  
Yang Yang ◽  
Yang Yang ◽  
Da Tong Qin ◽  
Jin Li

A new kind of pressure coordinated control system suite of regenerative braking system for hybrid electric vehicles (HEV) is proposed in this paper on the basis of appropriate transformation on traditional hydraulic braking system with ABS. AMEsim modular simulation platform is used to build a simulation model of the system. Dynamic performances of the key components and system are simulated and analyzed. And the simulation results show the effectiveness and feasibility of the pressure coordinated control system, which lays the foundation of the design and optimization for the regenerative braking system.


2013 ◽  
Vol 694-697 ◽  
pp. 73-76 ◽  
Author(s):  
Cong Wang ◽  
Hong Wei Liu ◽  
Liang Yao ◽  
Yan Bo Wang ◽  
Liang Chu ◽  
...  

A brake pedal stroke simulator is a key component of realizing a Regenerative Braking System. It provides a good pedal feeling to a driver, improves energy recovery and ensures braking security. This paper presents the hardware solution of the braking control system, the structure and key design parameters of a brake pedal stroke simulator. Through simulation, the energy recover rate and brake pedal feeling of drivers can be improved. The simulator can be used to realize the regenerative braking system in hybrid or electric vehicles.


This paper presents the analysis of the different braking system and fed into the motor application. Electric braking plays a major role in the working of electric vehicles the performance development, energy utilization. So the braking system is used to enhance the performance of the motor. Here the analysis of regenerative and dynamic braking performance in an induction motor.In energy generation context, regenerative braking is very proficient. On the other hand in dynamic braking, the energy will not fed back to the source, but the performance of regenerative braking is the generated power fed back to the source. Control techniques have used to utilize the energy efficiency of regenerative braking and analysis their performance in regenerative braking. In this study, comparison has been made between the utilization of regenerated power in dynamic braking and regenerative braking


Sign in / Sign up

Export Citation Format

Share Document