scholarly journals Modeling and Simulation of Photovoltaic Cell using Single Diode Solar Cell and Double Diode Solar Cell Model

Modeling and simulation of photovoltaic cells or PV cell is becoming important as it provides an easy platform to perform studies on photovoltaic cells and the design and analysis of the system based on photovoltaic cells. In this paper, we present our study of the ordinary photovoltaic module on the basis of one diode and two diode models. Studies are extended to solar cells as solar cells are similar to photodiodes. Performance of the solar cells may be described in terms of ideality factor (α), which decreases with temperature and is observed to affect the performance of the PV cell. PV systems exhibit better performance with diodes having higher values for α. In this paper, our efforts are to study the effects of α on Current and Power versus Voltage characteristics of the solar cells. MATLAB simulation of solar cell systems is a simple and elegant mechanism useful for designing and modeling the framework of the solar power plant

2020 ◽  
Author(s):  
Naoufel Ben Hamadi

Abstract Background: A photovoltaic cell, or solar cell, is an electronic component which, exposed to light, produces electricity thanks to the photovoltaic effect. Organic photovoltaic cells are photovoltaic cells of which at least the active layer consists of organic molecules. It has a yield of at least 15%. The future prospects of the research for solar cells application has required for the development in the field.Main body: Dye-sensitized solar cells are considered to be promising candidates for low-cost solar energy harvesting using sustainable and environmentally friendly materials. In general, solar cells sensitized to dyes consist of three parts: TiO2 sensitized to the photoanode dye with porous film on a transparent conductive glass, an electrolyte solution penetrating through the TiO2 anode film, and the conductive oxide transparent platinum glass as counter electrode.Conclusion: In this work, betanin dye was extracted from mature red fruits of Opuntia ficus indica and purified with fractional crystallization protocol using an 8:2 (v/v) ratio of ethyl acetate/ethanol. TiO2_films with different thickness values have been prepared CV and US sensitization of TiO2_films using betanin dye prove an enhancement on the uniformity distribution of the dye on the film in case of US method. Emission spectra of Dye_TiO2 films have been measured and show a hyperchromic shift of the emission intensity with the increase of the thickness due to the augmentation of betanin content. A comparison between the photovoltaic properties of prepared betanin_DSSC and N719 dye_DSSC reveals that betanin dye could be successfully proposed as a sensitizing dye in solar cell applications.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2659 ◽  
Author(s):  
Daniela Fontani ◽  
Paola Sansoni ◽  
Franco Francini ◽  
Matteo Messeri ◽  
Giacomo Pierucci ◽  
...  

The electroluminescence test is an experiment typically used to verify the behavior of the photovoltaic cell and to qualitatively check its integrity. It works by operating the photovoltaic cell as a diode polarized directly: the cells that light up in a module indicate how many of them work. This test provides an estimate of the maximum performance of the entire photovoltaic module. A qualitative inspection was performed by electroluminescence tests on 48 modules of photovoltaic cells. They had already been installed on a small-size concentration solar plant before the test and some modules had reached a lower level of performance than expected. A first electroluminescence test was performed, which showed that only 61.5% of the photocells worked. Since there were visible signs of humidity within the various modules, some of the inoperative modules underwent a dehumidification treatment in a climatic chamber. A second electroluminescence test showed that the percentage of functioning cells had increased to 66.3% after the drying treatment.


2020 ◽  
Vol 10 ◽  
Author(s):  
Naoufel Ben Hamadi

Background: A photovoltaic cell, or solar cell, is an electronic component which, exposed to light, produces electricity thanks to the photovoltaic effect. Organic photovoltaic cells are photovoltaic cells of which at least the active layer consists of organic molecules. It has a yield of at least 15%. The future prospects of the research for solar cells application has required for the development in the field. Objectives: In this work, we propose in this paper to study the potential of purified betanin dye on the DSSC applications. Methods: Extraction was elaborated under sonication conditions (25 kHz, 100 W) for 15 minutes. Various films of TiO2 with different thickness were prepared referring to doctor blade method on a FTO glass substrate. Results: The increase of the thickness value of dye_TiO2 films induces a hyperchromic shift of the emission intensity. Conclusion: In this work, betanin dye was extracted from mature red fruits of Opuntia ficus indica and purified with fractional crystallization protocol using an 8:2 (v/v) ratio of ethyl acetate/ethanol. TiO2_films with different thickness values have been prepared CV and US sensitization of TiO2_films using betanin dye prove an enhancement on the uniformity distribution of the dye on the film in case of US method. Emission spectra of Dye_TiO2 films have been measured and show a hyperchromic shift of the emission intensity with the increase of the thickness due to the augmentation of betanin content. A comparison between the photovoltaic properties of prepared betanin_DSSC and N719 dye_DSSC reveals that betanin dye could be successfully proposed as a sensitizing dye in solar cell applications.


2020 ◽  
Vol 14 ◽  

T Perovskite solar cells are becoming a dominant alternative for the traditional solar cells reaching an efficiency of 25.2% in a short span of twelve years (2008-2020). Here, we are going to describe a simple process to 'put a voice on a laser beam' and transmit it over a distance via a perovskite solar cell. This process considered as a fascinating example of amplitude modulation of light using sound vibrations. Therefore, the design and simulation of the perovskite solar cell will be described in details in this work. This design is concerned about the lead-free based perovskite solar cell model with the total proposed structure “Metal contact /PEDOT:PSS/ CH3NH3SnI3/ ZnO/ SnO2:F/ Metal contact”. To study the efficiency and the performances of a solar cell, the use of well-known software so-called SCAPS-1D is undertaken to perform the system simulation. The obtained results show also the influence of the doping level of the HTM layer and absorber layer thickness on the performance of the device. So far, only the simulation part has been validated. Despite the costeffect of the system prototype, however, it could be implemented here in the laboratory as perspective work.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 329 ◽  
Author(s):  
Dong Shin ◽  
Suk-Ho Choi

It is necessary to develop semitransparent photovoltaic cell for increasing the energy density from sunlight, useful for harvesting solar energy through the windows and roofs of buildings and vehicles. Current semitransparent photovoltaics are mostly based on Si, but it is difficult to adjust the color transmitted through Si cells intrinsically for enhancing the visual comfort for human. Recent intensive studies on translucent polymer- and perovskite-based photovoltaic cells offer considerable opportunities to escape from Si-oriented photovoltaics because their electrical and optical properties can be easily controlled by adjusting the material composition. Here, we review recent progress in materials fabrication, design of cell structure, and device engineering/characterization for high-performance/semitransparent organic and perovskite solar cells, and discuss major problems to overcome for commercialization of these solar cells.


2014 ◽  
pp. 319-346
Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


2016 ◽  
Vol 3 ◽  
pp. 64-85
Author(s):  
Liam Caruana ◽  
Thomas Nommensen ◽  
Toan Dinh ◽  
Dennis Tran ◽  
Robert McCormick

In the 21st century, global energy consumption has increased exponentially and hence, sustainable energy sources are essential to accommodate for this. Advancements within photovoltaics, in regards to light trapping, has demonstrated to be a promising field of dramatically improving the efficiency of solar cells. This improvement is done by using different nanostructures, which enables solar cells to use the light spectrum emitted more efficiently. The purpose of this meta study is to investigate irreversible entropic losses related to light trapping. In this respect, the observation is aimed at how nanostructures on a silicon substrate captures high energy incident photons. Furthermore, different types of nanostructures are then investigated and compared, using the étendue ratio during light trapping. It is predicted that étendue mismatching is a parasitic entropy generation variable, and that the matching has an effect on the open circuit voltage of the solar cell. Although solar cells do have their limiting efficiencies, according to the Shockley-Queisser theory and Yablonovitch limit, with careful engineering and manufacturing practices, these irreversible entropic losses could be minimized. Further research in energy losses, due to entropy generation, may guide nanostructures and photonics in exceeding past these limits.Keywords: Photovoltaic cell; Shockley-Queisser; Solar cell nanostructures; Solar cell intrinsic and extrinsic losses; entropy; étendue; light trapping; Shockley Queisser; Geometry; Meta-study


Author(s):  
Samer H. Zyoud ◽  
Ahed H. Zyoud ◽  
Naser M. Ahmed ◽  
Anupama R. Prasad ◽  
Sohaib Naseem Khan ◽  
...  

This article describes in detail the numerical modeling of a CZTS (copper zinc tin sulfide) based kesterite solar cell. The Solar Cell Capacitance Simulator -one-dimension (SCAPS-1D) software was used to simulate MO/CZTS/CdS/ZnO/FTO structured solar cells. The parameters of different photovoltaic thin-film solar cells are estimated and analyzed using numerical modeling. The effects of various parameters on the performance of the photovoltaic cell and the conversion efficiency are discussed. Since the response of the solar cell is also contingent on its internal physical mechanism, J-V characteristic measures are insufficient to characterize the behavior of a device. Different features, as well as different potential conditions, must be considered for simulation, disregarding the belief in the modeling of a solar cell. With a conversion efficiency of 25.72%, a fill factor of 83.75%, a short-circuit current of 32.96436 mA/cm2 and an open-circuit voltage of 0.64V, promising optimized results have been achieved. The findings will be useful in determining the feasibility of fabricating high-efficiency CZTS-based photovoltaic cells. The efficiency of a CZTS-based experimental solar cell is also discussed. First, the effects of experimentally developed CZTS solar cells are simulated in the SCAPS-1D environment. The experimental results are then compared to the SCAPS-1D simulated results. The conversion efficiency of an optimized system increases after cell parameters are optimized. Using one-dimensional SCAPS-1D software, the effect of system parameters such as the thickness, acceptor and donor carrier concentration densities of absorber and electron transport layers, and the effect of temperature on the efficiency of CZTS-based photovoltaic cells is investigated. The proposed results will greatly assist engineers and researchers in determining the best method for optimizing solar cell efficiency, as well as in the development of efficient CZTS-based solar cells.


Author(s):  
Gavin Buxton

Polymer solar cells are attracting attention as inexpensive versatile devices for generating electricity from sunlight. However, relatively low efficiencies are currently hindering their widespread application. The typically low efficiencies arise because of the complex physics within these devices. In particular, photons must first be absorbed to create a mobile excited state, or exciton. Then this exciton must dissociate into free charge at the interface between an acceptor and a donor polymer, and finally, the free charge must traverse the polymer solar cell to the correct electrodes. Mathematical and computer models play an important role in understanding the physics of these devices and ultimately allow us to tailor the internal structure and material properties to optimize device performance. A brief review of polymer solar cells is presented, with particular emphasis on their nanoscale architecture, before the chapter turns its attention to the simulations and models that can predict their behavior.


Sign in / Sign up

Export Citation Format

Share Document