scholarly journals A PID and PIDA Controller Design for an AVR System using Frequency Response Matching

A proportional integral derivative (PID) and proportional integral derivative acceleration (PIDA) controller have been designed for voltage regulation in power system. The controller (i.e. PID and PIDA) has been proposed via frequency response matching of desired reference model with that of system model transfer function. The proposed PID controller has been designed using one point frequency response matching as well as pole placement technique, while PIDA controller has been designed using two point frequency response matching by equating desired set-point closed loop reference model with that of closed loop transfer function of system model. The response of the proposed PIDA controller shows improved performance for automatic voltage regulator (AVR) system in comparison with recently available literature. The proposed PID and PIDA controllers provide fast and smooth response for an AVR system. The advantages associated with the PIDA controller for an AVR system is to reduce rise time, percentage overshoot and improved robustness, stability margin.

Author(s):  
Abdulsamed Tabak

Purpose The purpose of this paper is to improve transient response and dynamic performance of automatic voltage regulator (AVR). Design/methodology/approach This paper proposes a novel fractional order proportional–integral–derivative plus derivative (PIλDµDµ2) controller called FOPIDD for AVR system. The FOPIDD controller has seven optimization parameters and the equilibrium optimizer algorithm is used for tuning of controller parameters. The utilized objective function is widely preferred in AVR systems and consists of transient response characteristics. Findings In this study, results of AVR system controlled by FOPIDD is compared with results of proportional–integral–derivative (PID), proportional–integral–derivative acceleration, PID plus second order derivative and fractional order PID controllers. FOPIDD outperforms compared controllers in terms of transient response criteria such as settling time, rise time and overshoot. Then, the frequency domain analysis is performed for the AVR system with FOPIDD controller, and the results are found satisfactory. In addition, robustness test is realized for evaluating performance of FOPIDD controller in perturbed system parameters. In robustness test, FOPIDD controller shows superior control performance. Originality/value The FOPIDD controller is introduced for the first time to improve the control performance of the AVR system. The proposed FOPIDD controller has shown superior performance on AVR systems because of having seven optimization parameters and being fractional order based.


Author(s):  
Chimpalthradi R Ashokkumar ◽  
George WP York ◽  
Scott F Gruber

In this paper, linear time-invariant square systems are considered. A procedure to design infinitely many proportional–integral–derivative controllers, all of them assigning closed-loop poles (or closed-loop eigenvalues), at desired locations fixed in the open left half plane of the complex plane is presented. The formulation accommodates partial pole placement features. The state-space realization of the linear system incorporated with a proportional–integral–derivative controller boils down to the generalized eigenvalue problem. The generalized eigenvalue-eigenvector constraint is transformed into a system of underdetermined linear homogenous set of equations whose unknowns include proportional–integral–derivative parameters. Hence, the proportional–integral–derivative solution sets are infinitely many for the chosen closed-loop eigenvalues in the eigenvalue-eigenvector constraint. The solution set is also useful to reduce the tracking errors and improve the performance. Three examples are illustrated.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
K. Ghousiya Begum ◽  
A. Seshagiri Rao ◽  
T. K. Radhakrishnan

Abstract This manuscript deals with the assessment of parallel form of proportional integral derivative (PID) control structure for tracking the reference input designed for large dominant time constant processes whose dynamics are slow (integrating processes). The theoretical bound of integral absolute error (IAE) which is established for unstable first order process is extended to pure integrating process without using any approximations. This relies on direct synthesis tuning (DS) and the theoretical bound is obtained from the transfer function of closed loop system subjected to ramp input changes. An error based performance index is formulated on the basis of this IAE theoretical bound and actual IAE, to measure the behaviour of the controller employed for non self regulating (integrating) processes. This error based index evaluates the performance of closed loop controller and specifies whether the controller requires retuning or not. A sequence of simulated examples is used to illustrate the benefit and effectiveness of this new performance assessment method.


1997 ◽  
Vol 119 (2) ◽  
pp. 315-318 ◽  
Author(s):  
Somnath Pan ◽  
Jayanta Pal

A new method is presented for discretizing an existing analog controller. The method is based on frequency response matching of the closed-loop digital system with that of the original analog system. The method requires solution of linear algebraic equations and is computationally simple. Efficacy of the method is illustrated through examples taken from the literature.


Author(s):  
Davut Izci ◽  
Serdar Ekinci ◽  
Baran Hekimoğlu

In this paper, an optimal proportional, integral, derivative and acceleration (PIDA) controller design based on Bode’s ideal reference model and a novel modified Lévy flight distribution (mLFD) algorithm is proposed for buck converter system. The modification of the original Lévy flight distribution (LFD) algorithm was achieved by improving exploration and exploitation capabilities of the algorithm through incorporation of opposition-based learning mechanism and hybridizing with simulated annealing algorithm, respectively. The modified algorithm was used to tune the gains of the PIDA controller in order to operate a buck converter system that is mimicking the response of the Bode’s ideal reference model. Both the proposed novel algorithm and its PIDA controller design implementation for buck converter were confirmed through various tests and extensive analyses of statistical and non-parametric tests, convergence profile, transient and frequency responses, disturbance rejection, robustness, and time delay response. The comparative results with the state-of-the-art algorithms of manta ray foraging optimization, arithmetic optimization algorithm and the original LFD algorithm have shown that the proposed mLFD algorithm performs better than the compared ones in all assessments even when different well-known performance indices are used. The proposed Bode’s ideal reference model-based optimal PIDA control design with novel mLFD algorithm was also compared with other design approaches using the same buck converter system available in the literature. The proposed mLFD algorithm-based design approach has also shown greater effectiveness compared to other available methods, as well.


2013 ◽  
Vol 385-386 ◽  
pp. 1863-1868
Author(s):  
Le Ma ◽  
Yi Chai ◽  
Zheng Lu ◽  
Ying Ying Zhang

This paper studies uncertain demand by a supplier and manufacturer two echelon remanufacturing closed-loop supply chain system model setting up and solving the problem, gets the manufacturers to control the transfer function of the z-domain expression and manufacturer System Model solving analysis.


Sign in / Sign up

Export Citation Format

Share Document