scholarly journals Dual-Band Square Microstrip Patch Antenna for 4G/LTE and Wi-Fi Applications

Author(s):  
Sapna Kumari

Abstract: A dual-band, Square-shaped Microstrip Patch Antenna (SMPA) with two opposite corner cuts is proposed. The presented design is suitable for 4G/LTE and Wi-Fi applications as it resonates at 2.13GHz and 2.41GHz frequencies. The FR4 substrate with co-axial feed is used for fabrication and is simulated using CST software. The simulation result provides enhanced antenna specification of return loss (-42.64&-20.13) dB, bandwidth (62.7&89) MHz and percentage bandwidth (2.94&3.69) % than the conventional antenna prototype. Furthermore, a comparative study of simulated and experimental findings is analyzed in this manuscript. Keywords: Dual-band, return Loss, Bandwidth, Percentage Bandwidth, 4G/LTE, Wi-Fi

Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2014 ◽  
Vol 11 (2) ◽  
pp. 89
Author(s):  
R. Wali ◽  
S. Ghnimi ◽  
A.G. Hand ◽  
T. Razban

A new compact microstrip slot antenna with Y-shaped coupling aperture is proposed. This antenna is based on a rectangular form with a microstrip fed line for excitation, and consists of slots on the edge of the radiation patch to provide dual-band operation. The design and simulation of the antenna were performed using CST Microwave Studio simulator. A prototype of the proposed antenna has been constructed and tested. In order to validate the return loss of the prototype antenna, the experimental results are presented. The results show two available bands with –10 dB band S at 2.7 GHz and band C at 5 GHz. Also, good radiation performance and antenna gain over the two frequency ranges have been obtained. Computation results confirm the experimental findings. 


2018 ◽  
Vol 7 (4) ◽  
pp. 587-592
Author(s):  
K. Thana Pakkiam ◽  
K. Baskaran ◽  
J. S. Mandeep

In this paper, a simple mail box design of a dual band microstrip patch antenna, is proposed, designed, fabricated and measured for wireless LAN communications. The proposed antenna is designed using the TLC 30 (TACONIC) substrate, with a relative permittivity of 4.3 and substrate height of 1.6mm. It is designed to operate at 2.44 GHz and 5. 30 GHz respectively. The proposed antenna is the size of 31mm x 34mm x1.6mm and is incited by a 50 Ω micro strip feed line. The characteristics of the antenna are designed and the performance of the modelled antenna is evaluated using CST Microwave Studio. The return loss, radiation patterns and peak antenna gain of 6.5 dBi for frequency 2.44 GHz and 6.2 dBi for 5.30 GHz is separately and successfully plotted. The fabricated prototype exhibits an agreement between the measured and simulated return loss.


2020 ◽  
Vol 16 ◽  
pp. 01-12
Author(s):  
Rabnawaz Sarmad Uqaili ◽  
Junaid Ahmed Uqaili ◽  
Sidrish Zahra ◽  
Faraz Bashir Soomro ◽  
Ali Akbar

This paper presents the design of a dual-band microstrip patch antenna for Wi-Fi that operates at 2.5 GHz and 5.8 GHz. The antenna contains a rectangular patch with two rectangular slots. The first slot is incorporated in the patch while the second slot is incorporated in the ground plane. The antenna is based on a microstrip fed rectangular patch printed on the FR-4 epoxy substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm with patch size 24 mm × 21 mm. The simulated result shows that the realized antenna successfully works on dual-band and subsequently achieves a bandwidth of 100 MHz and 200 MHz as well as the return loss about -29.9 dB and -15.16 dB for 2.5 GHz and 5.8 GHz respectively. A stable omnidirectional radiation pattern is observed in the operating frequency bands. The antenna meets the required specifications for 802.11 WLAN standards.


Double Fibonacci spiral in a circle with microstrip line feeding technique is designed in the frequency range from 0.1GHz to 6GHz. The antenna is designed and simulated in computer simulation technology microwave studio software, substrate Fr-4 with thickness 1.59mm is used and antenna parameters such as return loss, surface current, E-field, H-field and gain are calculated for Double Fibonacci spiral microstrip patch (DFSM) antenna. The antenna is used for ISM (industrial, scientific and medical) frequency band (2.45GHz) and a new unutilized band for next generation services, gain is 2.22dB and 3.16dB and bandwidth is 25.94% and 22.83% on resonating frequencies.


Author(s):  
Ranjan Mishra ◽  
Raj Gaurav Mishra ◽  
R. K. Chaurasia

The objective of the paper is to design and investigate a rectangular microstrip antenna that covers the band from 2.4 to 3.6 GHz. The proposition consolidates investigation of fundamentals of microstrip patch antenna. A progression of simulation in Ansoft HFSS (High Frequency System Simulation) has been carried out to discover the dual operating frequency. The qualities of the patch antenna rely on its different geometrical parameters. The investigation is carried in terms of two prime factors: Return loss and radiation pattern.


2012 ◽  
Vol 1 (3) ◽  
pp. 205 ◽  
Author(s):  
Bimal Garg ◽  
Rahul Dev Verma ◽  
Ankit Samadhiya

In this work a dual band rectangular microstrip patch antenna along with the innovative metamaterial structure is proposed at a height of 3.2mm from the ground plane, which consists of a rectangular geometry incorporated with c shaped structure. This work is mainly focused on increasing the potential parameters of microstrip patch antennas and analyzing the dual band operation of proposed antenna. The proposed antenna is designed to resonate at 2.478GHz and 2.919GHz frequency. The impedance bandwidth of the patch antenna along with the proposed metamaterial structure at 2.478GHz is improved by 20.4MHz and return loss is reduced by 20.128dB. At 2.919GHz the impedance bandwidth is improved by 25.4MHz and return loss is reduced by 19.564dB. For verifying that the proposed metamaterial structure possesses Negative values of Permeability and Permittivity within the operating frequency ranges, Nicolson-Ross-Weir method (NRW) has been employed. For simulation purpose CST-MWS Software has been used.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Indrasen Singh ◽  
Vijay Shanker Tripathi ◽  
Sudarshan Tiwari

A dual-band microstrip patch antenna is designed and analyzed using metamaterial artificial substrate. Metamaterial based substrate is designed using Square Split Ring Resonator (SSRR) and Wire Strip. The antenna is tuned to work at two resonating frequencies in the frequency range from 1 GHz to 4 GHz depending on the geometric specifications of SSRR, strip line, radiating patch, and feed location point. Proposed antenna provides good return loss behavior at both resonating frequencies. The obtained VSWR at both resonating frequencies is very much near to 1. Proposed antenna covers applications in mobile communication and Wi-MAX. Proposed patch antenna is compared with the conventional patch antenna, which shows the significant miniaturization as compared to conventional patch antenna.


2018 ◽  
Vol 7 (3) ◽  
pp. 1745 ◽  
Author(s):  
Hiwa Taha Sediq

This study describes the design of dual rectangular microstrip patch antenna for Wi-Fi and WiMAX wireless communication applications. In this work, the technique of design array patch antennas was used in order to improve the physical antenna characteristics for Wi-Fi and WiMAX device. As a result, the proposed technique causes to increase the gain and directivity of the antenna. Using this method also leads to enhance measurement bandwidth of antenna and some other antenna parameters as mentioned in this research paper. A dual-band microstrip patch antenna is developed for WiMAX/Wi-Fi wireless applications that operate at a minimum frequency of 2.4 GHz and a maximum frequency band of 3.5 GHz with its dimensions is L= 88.27 mm, W= 171.4 mm and h= 1.67 mm. The achieved parameters of dual patch array antenna for 2.4 GHz and 3.5 GHz are (gain of 8.25 dB, directivity of 10.4 dBi, measurement bandwidth of 65.82 MHz and measurement return loss of -20.86 dB) and (gain of 7.56 dB, directivity of 8.76 dBi, measurement bandwidth of 98.96 MHz and measurement return loss of -21.38 dB) respectively. 


Sign in / Sign up

Export Citation Format

Share Document