scholarly journals Research on Thermal Insulation Characteristic of Multilayer Clothing

Winter outdoor clothing is aimed at protecting human being against harsh environmental conditions, especially against cold. Thermal insulating properties of a textile material plays significant role in protective clothing. Thermal protective clothing usually is a multilayer construction composed of three layers -Base layer, Insulating material, Outer layer. The previously available jacket insulating layer is always filled with down feather which cause harm to the wearer. This study concentrates on replacing the middle layer with ecofriendly natural Fiber-Kapok. Thickness, thermal conductivity, Air permeability, and wickability properties of fiber and fabric is determined. The layers are been bonded with Needle punching and thermal bonding technique. The effect of Multilayer clothing in cold weather is been tested and analyzed using different proportions of natural ecofriendly-kapok fiber.

2021 ◽  
Vol 11 (6) ◽  
pp. 2725
Author(s):  
Jakub Svoboda ◽  
Tomáš Dvorský ◽  
Vojtěch Václavík ◽  
Jakub Charvát ◽  
Kateřina Máčalová ◽  
...  

This article describes an experimental study aimed at investigating the potential use of recycled rubber granulate from waste tires of fractions 0/1 and 1/3 mm in cement composites as a 100% replacement for natural aggregates. The use of waste in the development and production of new building materials represents an important aspect for the sustainability and protection of the environment. This article is focused on the sound-absorbing and thermal-insulating properties of experimental cement composites based on recycled rubber from waste tires. The article describes the grain characteristics of recycled rubber, sound absorption capacity, thermal conductivity and strength characteristics. The results of this research show that the total replacement of natural aggregate with recycled rubber in cement composites is possible. Replacing natural aggregate with recycled rubber has significantly improved the thermal and acoustic properties of the prepared cement composites, however, at the same time; there was also the expected decrease in the strength characteristics due to the elasticity of rubber.


2012 ◽  
Vol 174-177 ◽  
pp. 1533-1536
Author(s):  
Hai Rong Yang ◽  
Yan Yuan

The sandwich external wall panel is made of fireproof Paper Honeycomb Board (PHB) as kernel material, and the external surface is covered by colorful extruded steel board, while the internal surface is coated with the thermal insulating frothing ceramic board or the calcium silicate board, which works as the insulating layer or protecting layer of the panel. Two types of formation design are suggested, i.e., Type-A and Type-B. After corresponding thermal calculation, the maximum thermal transmission factor is determined as 0.424W/(m2• K), which complies with the threshold stipulated in the National Code for external wall panel used in cold climate area. The newly designed wall panel will save 65% of energy when compared with the traditional one made in 1980.


2018 ◽  
Vol 89 (16) ◽  
pp. 3244-3259 ◽  
Author(s):  
Sumit Mandal ◽  
Simon Annaheim ◽  
Andre Capt ◽  
Jemma Greve ◽  
Martin Camenzind ◽  
...  

Fabric systems used in firefighters' thermal protective clothing should offer optimal thermal protective and thermo-physiological comfort performances. However, fabric systems that have very high thermal protective performance have very low thermo-physiological comfort performance. As these performances are inversely related, a categorization tool based on these two performances can help to find the best balance between them. Thus, this study is aimed at developing a tool for categorizing fabric systems used in protective clothing. For this, a set of commercially available fabric systems were evaluated and categorized. The thermal protective and thermo-physiological comfort performances were measured by standard tests and indexed into a normalized scale between 0 (low performance) and 1 (high performance). The indices dataset was first divided into three clusters by using the k-means algorithm. Here, each cluster had a centroid representing a typical Thermal Protective Performance Index (TPPI) value and a typical Thermo-physiological Comfort Performance Index (TCPI) value. By using the ISO 11612:2015 and EN 469:2014 guidelines related to the TPPI requirements, the clustered fabric systems were divided into two groups: Group 1 (high thermal protective performance-based fabric systems) and Group 2 (low thermal protective performance-based fabric systems). The fabric systems in each of these TPPI groups were further categorized based on the typical TCPI values obtained from the k-means clustering algorithm. In this study, these categorized fabric systems showed either high or low thermal protective performance with low, medium, or high thermo-physiological comfort performance. Finally, a tool for using these categorized fabric systems was prepared and presented graphically. The allocations of the fabric systems within the categorization tool have been verified based on their properties (e.g., thermal resistance, weight, evaporative resistance) and construction parameters (e.g., woven, nonwoven, layers), which significantly affect the performance. In this way, we identified key characteristics among the categorized fabric systems which can be used to upgrade or develop high-performance fabric systems. Overall, the categorization tool developed in this study could help clothing manufacturers or textile engineers select and/or develop appropriate fabric systems with maximum thermal protective performance and thermo-physiological comfort performance. Thermal protective clothing manufactured using this type of newly developed fabric system could provide better occupational health and safety for firefighters.


Sign in / Sign up

Export Citation Format

Share Document