Formation Design of Sandwich External Wall Panel in Cold Climate Area Made of Paper Honeycomb Board

2012 ◽  
Vol 174-177 ◽  
pp. 1533-1536
Author(s):  
Hai Rong Yang ◽  
Yan Yuan

The sandwich external wall panel is made of fireproof Paper Honeycomb Board (PHB) as kernel material, and the external surface is covered by colorful extruded steel board, while the internal surface is coated with the thermal insulating frothing ceramic board or the calcium silicate board, which works as the insulating layer or protecting layer of the panel. Two types of formation design are suggested, i.e., Type-A and Type-B. After corresponding thermal calculation, the maximum thermal transmission factor is determined as 0.424W/(m2• K), which complies with the threshold stipulated in the National Code for external wall panel used in cold climate area. The newly designed wall panel will save 65% of energy when compared with the traditional one made in 1980.

2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2002 ◽  
Author(s):  
Ibon Aranberri ◽  
Sarah Montes ◽  
Ewa Wesołowska ◽  
Alaitz Rekondo ◽  
Krystyna Wrześniewska-Tosik ◽  
...  

In the present work, sustainable rigid polyurethane foams (RPUF) reinforced with chicken feathers (CF) were prepared and characterized. The bio-based polyol used to formulate the foams was obtained from castor oil. This investigation reports the influence of the chicken feathers fibers as reinforcement of RPUF, on water absorption, thermal, mechanical and morphological properties (field-emission scanning electron microscope—FESEM) and thermal conductivity on water-blown biofoams. It was found that the biofoams improved thermal insulating properties when CF was added. The addition of CF to foams provided lower heat flux density to the biofoams obtaining bio-based materials with better insulation properties. The results obtained in this study proved that the incorporation of CF to RPUF modified the cell structure of the foams affecting their physical and mechanical properties, as well as functional properties such as the heat transmission factor. These biofoams containing up to 45% of bio-based materials have shown the potential to replace fully petroleum-based foams in thermal insulation applications.


2019 ◽  
Vol 11 (3) ◽  
pp. 912 ◽  
Author(s):  
Goopyo Hong ◽  
Suk-Won Lee ◽  
Ji-Yeon Kang ◽  
Hyung-Geun Kim

An external wall panel (EWP) as a novel alternative to provide spatial flexibility and improve the performance of external walls was developed. The purpose of this study was to analyze the thermal performance of this EWP. A simulation analysis was carried out to scrutinize whether it was vulnerable to condensation, considering South Korea’s weather conditions, and find countermeasures to prevent this. Results indicated that the indoor surface temperature with the measures of added insulation materials and an inserted thermal-breaker was over 16.5 °C and that these methods could prevent condensation. In addition, this study assessed unsteady-state thermal characteristics, linear thermal transmittance, and the effective thermal transmittance of EWP. Effective thermal transmittance was estimated in consideration of the heat transmittance of EWP and the linear thermal transmittance of its slabs and its connection parts. The thermal characteristics of the building envelope are needed to analyze effective thermal transmittance and linear thermal transmittance-associated thermal bridges.


2009 ◽  
Vol 15 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jolanta Šadauskienė ◽  
Andrius Buska ◽  
Arūnas Burlingis ◽  
Raimondas Bliūdžius ◽  
Albinas Gailius

In order to reduce the amounts of work at the construction site, single‐ply dual density thermal insulating roofing boards are used with increasing frequency for thermal insulation of flat roofs. In this case, the joints between boards are not overlapped by the other ply over it; therefore gaps of varying width form between the sides of the boards through the entire thickness of the insulating layer, whose effect on the effective thermal conductivity of the thermal insulating layer must be evaluated. The aim of this project was to assess the reliability of standard method, used to determine the impact of such air gaps on the effective thermal conductivity of the thermal insulating layer by comparing the results of calculations and the results of measurements of thermal conductivity, also to determine the correction factors for thermal transmittance of horizontal thermal insulation layers due to the forming vertical air gaps between the single‐ply mineral wool boards. After measurements of thermal resistances of 50 mm thick thermal insulation board with the air gaps which width varied from 3 mm to 20 mm, it was determined that the thermal conductivity value of the air gaps increases with the increment of the width of air gaps. After completion the experimental measurements of thermal conductivity it was determined that the height of closed and unventilated or partly ventilated air gaps has no effect on the properties of effective thermal conductivity of the thermal insulation layer when the air gap width is up to 5 mm. When wider unventilated or partly ventilated air gaps occur, the effective thermal conductivity coefficient increases proportionally as the height of the air gaps increases. Calculated according to the standard method the affix to the thermal transmittance is overly general and not always appropriate. In some cases it is 6 times higher or 4 times lower than the measured one. In this paper a method to evaluate the effects of air gaps by the use of correction factor to the thermal transmittance of the horizontal thermal insulating layer is proposed. Santrauka Nornt sumažinti darbų apimtis statybos vietoje, stogams šiltinti vis dažniau naudojamos vienu sluoksniu klojamos dvitankės termoizoliacinės plokštės. Šiuo atveju plokščių sandūros neperdengiamos, todėl tarp plokščių kraštinių susidaro įvairaus pločio plyšių, kurių įtaka termoizoliacinio sluoksnio šilumai perduoti turi būti įvertinta. Šio darbo tikslas yra įvertinti standartinio metodo, taikomo tokių plyšių poveikiui sluoksnio šilumos laidumui, patikimumui nustatyti lyginant skaičiavimo ir šilumos laidumo matavimų rezultatus, nustatyti horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento pataisas dėl vertikaliųjų oro plyšių susidarymo. Apskaičiavus 50 mm storio termoizoliacinio sluoksnio oro plyšių šilumines varžas, kai plyšių plotis yra nuo 3–20 mm, nustatyta, kad oro plyšių šilumos laidumo koeficiento vertė didėja didėjant oro plyšio pločiui. Atlikus eksperimentinius šilumos laidumo matavimus, nustatyta, kad susidarančių uždarų ir nevėdinamų arba iš dalies vėdinamų oro plyšių aukštis neturi įtakos termoizoliacinio sluoksnio šilumos laidumo savybėms, kai oro plyšys yra iki 5 mm pločio. Esant platesniems uždariems ir nevėdinamiems oro plyšiams, šilumos laidumo koeficientas proporcingai didėja didėjant oro plyšių aukščiui. Pagal standartinį metodą skaičiuotas šilumos perdavimo koeficiento priedas yra per daug apibendrinantis ir ne visada tinkamas. Kai kuriais atvejais jis yra 6 kartus didesnis arba 4 kartus mažesnis už išmatuotąjį. Šiame darbe pasiūlytas horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento priedo, naudojamo plyšių įtakai įvertinti, skaičiavimo metodas.


2012 ◽  
Vol 602-604 ◽  
pp. 1000-1003 ◽  
Author(s):  
Xiang Zhang ◽  
Fan Zhang ◽  
Chao Lu Yin ◽  
Yun Song Luo ◽  
Shi Ying Lin ◽  
...  

This paper focused on the evaluation of burning performance of the traditional organic insulation materials for external wall of building, such as XPS, EPS and PU foam. Results of full-scale fire testing showed that if the LOI of organic materials reach Class B2 requirements, and the organic insulating layer has been protected by thin plastering, then the fire will not spread during the full-scale practical fire testing.


2021 ◽  
Vol 260 ◽  
pp. 03022
Author(s):  
Xiujuan Lv ◽  
Wuxin Chen ◽  
Xuguang Li

Taking a building under construction as an example, based on ABAQUS software, studies the failure mode, hysteretic curve, displacement ductility and energy consumption capacity of ALC external wall panel under three working conditions of assembled stiffened column frame brace system, assembled frame system and cast-in-place frame system.The simulation results show that:1.Under the action of low cycle load, the assembled stiffened column frame support system has no damage,the maximum stress value is 6.98 MPa, which is located at the position of steel plate at the column bottom; 2.Under the condition of ALC hanging wall plate, the structure ductility is better; 3.Part of the energy consumption is borne by the light material hanging wall plate, and the stiffened column frame support system has higher energy consumption capacity.The assembled ALC external wall panel based on the rigid column frame support system has better mechanical performance, can significantly improve the energy consumption capacity of the overall structure, and has high construction feasibility,economy and engineering application value.


2019 ◽  
Vol 136 ◽  
pp. 05009
Author(s):  
Chen Jie ◽  
Luo Zhixing ◽  
Yang Liu

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the high thermal mass techniques. The application of this type of technology is widely used in traditional architecture. The paper aims at studying the effect of both high thermal insulation and high thermal mass techniques in buildings dynamic behaviour in Dry-Hot and Dry-Cold Climate. The two techniques can lead to conflicting requirements when considering winter and summer conditions. Therefore, it is necessary to identify insulation measures that conserve the mass dynamic behavior. Experimental investigations were carried out on a single - family house to characterize the behavior of one room with high thermal mass in different seasons. Thermal simulations made it possible to explore different retrofit configurations. Different thermal mass and thermal insulation were compared on internal surface temperature. The analysis shows that the most suitable intervention is both high thermal insulation and high thermal mass techniques, and the decrease of the absorption coefficient of the outer surface is beneficial to improve the overall level of solar radiation.


Sign in / Sign up

Export Citation Format

Share Document