scholarly journals Combustion of Agricultural Wastes/Coal in Circulating Fluidized Bed

2020 ◽  
Vol 9 (1) ◽  
pp. 1156-1165

This paper presents an experimental investigation on circulating fluidized bed (CFB) combustion of one of agricultural wastes (faba bean hulls) and co-combustion faba bean hulls and Egyptian (Sinai) coal. The test rig is a pilot scale CFB combustor of 145 mm inner diameter, 2 m tall and 100 kW thermal capacity. The influences of excess air, degree of air staging, bean hull particle size and coal share were studied. Temperature, heat flux, CO, NOx and SO2 concentrations along the reactor height and flue gas out from cyclone were measured. The combustion efficiency was calculated based on CO emission and unburned char in flue gas. The results showed that size reduction of bean hulls results in lower CO and NOx emissions. The induction of secondary air has a negative effect on combustion efficiency. The highest efficiency recorded for bean hulls combustion was 98.5% at excess air ratio (EA) =1.09 without secondary air. Co-combustion of Sinai coal and bean hulls reduced CO and NOx emissions but increased SO2 emissions. The results suggest that bean hulls are potential fuel that can be utilized for efficient and clean energy production by using CFB combustion system especially at co-combustion.

Author(s):  
Leming Cheng ◽  
Zhongyang Luo ◽  
Zhenglun Shi ◽  
Haixiao Zheng ◽  
Qinghui Wang ◽  
...  

Combustion behavior and SO2, NOx emissions of anthracite coal in a circulating fluidized bed are reported in this paper. Experimental researches were done on a 1 MWt circulating fluidized bed facility with a 0.31 m × 0.31 m cross section and 11.2 m height combustor. The anthracite coal with 6.28% volatile and 3.76% sulfur content burns steadily during the test. The bed was operated under different temperature, Ca/S ratio and excess air. A limestone containing 75% CaCO3 and 15% MgCO3 was used as the sulfur sorbent. Results show that the SO2 emission varies with operating bed temperature and more than 90% sulfur capture efficiency can be reached while Ca/S is about 3. With Rosemount Analytical NGA2000, N2O, NO and NO2 were also measured in the test. It was found the majority content of NOx was NO and the least was NO2. Those NOx emissions change highly with the excess air number.


Author(s):  
Zhaoping Zhong ◽  
Basheng Jin ◽  
Jixiang Lan ◽  
Changqing Dong ◽  
Hongchang Zhou

This paper presents experimental study of fluidized absorption process for flue gas purification of co-combustion of municipal solid waste (MSW) and coal in a circulating fluidized bed Combustor (CFBC) test rig. The test rig is composed of a CFBC, coal/MSW feeding subsystem, ash cycle subsystem and flue gas purification subsystem. In the circulating fluidized bed, section area of fluidized bed is 230mm × 230mm and the freeboard is 460mm × 395mm. The total height of the test facility is 8m; height of bed and freeboard are 1.5m and 6m respectively. The preheated air enters the bed as primary air passing through distributor and provides oxygen for combustion. Six movable tubes immerged within the bed are used in adjusting the bed temperature. The cyclone separator is fixed up at the exit of chamber. The separated ashes return to chamber through the recycling feeder for decreasing the carbon content in fly ash and promoting the combustion efficiency. The flue gas from the exit of cyclone separator enters the air preheater to preheat the cold air at first, then enters the flue gas purification facility, finally be discharged into air by induced drafted fan passing through the stack. Coal is carried to a positive pressure feeding entrance by screw feeder and enters the bed. Secondary air is injected into a sealed end feeding pipe under MSW feeder, for enhancing the mixture in furnace, providing the oxygen for combustion and preventing from MSW remaining in the feeding pipe. The material of bed is silicon sand. Fluidized absorption facility for flue gas purification in MSW incineration is mainly composed of humidification system, absorption tower, flue gas reheater, fabric filter, slurry making pool, sediment pool and measurement subsystem. The temperature of flue gas from boiler by induced draft fan reduces to 120°C when flue gas enters the humidification region, which can increase the ability of acid gas absorption and prevent the slurry evaporation. When flue gas and limestone slurry enter the absorption tower, the three-phase material of gas, liquid and solid generates intense mixing and forms bubbling layer. The acid gases in flue gas are absorbed by limestone slurry, and a large amount of dusts are collected in reaction tank. Feeding oxidation air into slurry and agitating slurry simultaneously so as to promote the inner circulation of slurry and oxygenization of calcium sulphite. Flue gas passes through undulate demister which has high efficiency and low resistance, then enters fabric filter after reheating, finally be discharged into the stack by induced draft fan. The mixture of slurry and gypsum is emitted into the sediment pool through bottom and clear liquid in sediment pool returns to slurry making pool or absorption tower. The test results are as follows: the combustion efficiency is greater than 95%, the carbon content of fly ash is lower than 8%, and the loss of slag combustion is lower than 5%. When sorbent is limestone slurry, the concentration of slurry is 1%, the circulating ratio is 3, the jet rate is 5∼15m/s. The immerged depth of bubbling pipe under the slurry is 140mm. In the fluidized absorption facility for flue gas purification of MSW incineration, the desulfurization efficiency is >90%, the de-nitrification efficiency is 20∼30%, the de-chlorination efficiency is >80%, the removal efficiency of dust, heavy metal and dioxins are >99%, >98.6% and 99.35% respectively. After passing through fluidized absorption facility for flue gas purification of MSW incineration, when the concentration of O2 is 11%, the emission concentration of every components in flue gas are: SO2 is 20∼50mg/Nm3, NOx is 130∼270 mg/Nm3, HCl is 7∼12 mg/Nm3, HF is ∼8 mg/Nm3, CO2 is7∼8%, dust is 23∼67 mg/Nm3, Cr is 0.2172 mg/Nm3, Cu is 0.0454 mg/Nm3, Pb is 0.2963 mg/Nm3, Zn is 0.2074 mg/Nm3, Fe is 2.834 mg/Nm3, As is 1.112 × 10−3 mg/Nm3, Hg is 2.38 × 10−4 mg/Nm3 and dioxins is 0.1573 ng/Nm3. These emission concentrations are all lower than the Chinese emission standards. Some of them come close to the emission standards of developed country.


Author(s):  
Changsui Zhao ◽  
Xin Sun ◽  
Xiaoping Chen ◽  
Lifeng Gu ◽  
Yongwang Li ◽  
...  

Experimental research on co-combustion of paper mill waste and coal was conducted in a pilot circulating fluidized bed combustor with a cross section of 0.23×0.23m2. Mixed waste of paper mill sludge and process residue from a paper company and bituminous coal were used in the experiments. The temperature distribution in the combustor was measured. The bottom ash and fly ash were sampled and analyzed. Six gas components were analyzed with a gas analyzer. The effects of some parameters, such as waste variety, fluidization velocity, secondary air rate, excess air, on the combustion characteristics and the emission of SO2 and NOx were clarified. The experimental results indicate that the incinerator temperature decreases with increase in secondary air rate and waste/coal mass ratio for the waste/coal mass ratios tested. When the excess air ratio increases, the dense bed temperature increases, but the temperature in the dilute phase region first increases, and then it decreases with further increase in the excess air ratio. The combustion efficiency increases with increase in the secondary air rate and decrease in the waste/coal mass ratio. With increase in the excess air ratio, the combustion efficiency first increases, then it reaches a peak and finally decreases. For the waste/coal mass ratio of 1.0, the highest combustion efficiency corresponds to the excess air ratio of 1.25. Higher desulfurization efficiency can be obtained with higher excess air, proper incinerator temperature and lower secondary air rate. The NO emission increases with increase in excess air ratio and decrease in the secondary air rate. Higher temperature, stronger staged air injection and lower excess air ratio are beneficial to suppressing N2O emission from incineration. The emission can be reduced by decreasing excess air ratio, increasing incinerator temperature and secondary air rate.


2020 ◽  
Vol 04 ◽  
Author(s):  
Guohai Jia ◽  
Lijun Li ◽  
Li Dai ◽  
Zicheng Gao ◽  
Jiping Li

Background: A biomass pellet rotary burner was chosen as the research object in order to study the influence of excess air coefficient on the combustion efficiency. The finite element simulation model of biomass rotary burner was established. Methods: The computational fluid dynamics software was applied to simulate the combustion characteristics of biomass rotary burner in steady condition and the effects of excess air ratio on pressure field, velocity field and temperature field was analyzed. Results: The results show that the flow velocity inside the burner gradually increases with the increase of inlet velocity and the maximum combustion temperature is also appeared in the middle part of the combustion chamber. Conclusion: When the excess air coefficient is 1.0 with the secondary air outlet velocity of 4.16 m/s, the maximum temperature of the rotary combustion chamber is 2730K with the secondary air outlet velocity of 6.66 m/s. When the excess air ratio is 1.6, the maximum temperature of the rotary combustion chamber is 2410K. When the air ratio is 2.4, the maximum temperature of the rotary combustion chamber is 2340K with the secondary air outlet velocity of 9.99 m/s. The best excess air coefficient is 1.0. The experimental value of combustion temperature of biomass rotary burner is in good agreement with the simulation results.


2011 ◽  
Vol 383-390 ◽  
pp. 2603-2607
Author(s):  
Yao Yi ◽  
Guang Jian Chen ◽  
Jin Ling Jia

Focusing on energy-saving issues of boiler, this paper finds out the combustion conditions inside boiler furnace by monitoring and analysis on oxygen content of flue gas, carbon content of fly ash, CO and CO2 contents. The intelligent control of boiler combustion was achieved and combustion efficiency was rosen. Using neural network controlling model, automatic optimization of oxygen delivery volume,coal delivery volume, the total wind pressure of primary air, the secondary air-door opening degree and furnace negative pressure were achieved, and the boiler efficiency increasing by 5 ~ 7%.


Author(s):  
Han-Ping Chen ◽  
Xian-Hua Wang ◽  
Shi-Hong Zhang ◽  
De-Chang Liu ◽  
Yu-Hua Lai ◽  
...  

In China, there are a large number of pulverized coal-fired industrial boilers, whose steam capacities are usually relatively small. These boilers can burn only high-grade coal and have low combustion efficiency. Furthermore, the combustion emissions, such as SO2 and NOx, pollute the environment severely. Therefore it is very important and urgent to adopt economically efficient and environmentally friendly technologies to retrofit these boilers. At the same time, there are many industrial wastes, such as bagasse, wood waste, rubbish, petroleum coke and so on, need burning disposal in China. Fluidized bed combustion technology is a kind of clear combustion technology, which has many advantages, such as excellence fuel flexibility, high combustion efficiency, low pollutant emission and good turndown capability etc. So, adopting fluidized bed combustion technology, retrofitting pulverized coal-fired boiler into fluidized bed boiler can realize pure burning various wastes or co-firing with coal, which should have great economic benefits and social benefits. And the application prospect of the method is also extensive. The State Key Laboratory of Coal Combustion has successfully retrofitted a 25t/h pulverized coal-fired boiler into circulating fluidized bed boiler with in-bed tubes and downward exhaust cyclone. The retrofitted boiler can burn mixture of coal and bagasse and the steam capacity reaches 35t/h. This paper presents the retrofitting measures and the operation status of the boiler after retrofitting.


2021 ◽  
pp. 477-488
Author(s):  
Xin Tao ◽  
Lujian Chen ◽  
Yiqun Huang ◽  
Runxia Cai ◽  
Hairui Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document