scholarly journals Optimization of Clay Soil Stabilization using Waste Plastic Powder

Usage of plastic products, including polythene sacks, cans, containers and packages, etc., is growing every day. It further raises the quantity of plastic material waste. This contributes to numerous issues with the environment and climate. For several decades much of the waste generated today will linger in the atmosphere, posing a number of environmental problems. herefore, excess will be utilized successfully in any sector of technological advancement. Many by-products are being produced using the plastic wastes. By adding plastic wastes to the clay soil, we have to know about the changes in the strengths like California bearing ratio, free swell index, and Unconfined Compression test. The soil collected for the investigation is from the southern district of Tamilnadu, India. The different percentage of plastic powder was replaced to improve the soil property.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1933 ◽  
Author(s):  
Chenglong Yin ◽  
Wei Zhang ◽  
Xunli Jiang ◽  
Zhiyi Huang

Initial water content significantly affects the efficiency of soil stabilization. In this study, the effects of initial water content on the compressibility, strength, microstructure, and composition of a lean clay soil stabilized by compound calcium-based stabilizer were investigated by static compaction test, unconfined compression test, optical microscope observations, environment scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The results indicate that as the initial water content increases in the range studied, both the compaction energy and the maximum compaction force decrease linearly and there are less soil aggregates or agglomerations, and a smaller proportion of large pores in the compacted mixture structure. In addition, for specimens cured with or without external water supply and under different compaction degrees, the variation law of the unconfined compressive strength with initial water content is different and the highest strength value is obtained at various initial water contents. With the increase of initial water content, the percentage of the oxygen element tends to increase in the reaction products of the calcium-based stabilizer, whereas the primary mineral composition of the soil-stabilizer mixture did not change notably.


2020 ◽  
Vol 28 (4) ◽  
pp. 1-7
Author(s):  
B. J. S. Varaprasad ◽  
Jayaprakash Reddy Joga ◽  
Suryaprakash Reddy Joga

AbstractA useful method for the disposal of waste from an incineration plant is to reuse it for geotechnical and civil engineering applications. The primary objective of this study concerns the reuse of local incinerated ash from municipal solid wastes in soil stabilization. Municipal Solid Waste Incinerated Ash (MSWIA) is blended with soil in various combinations and tested for its Atterberg limits, unconfined compressive strength (UCS), California Bearing Ratio (CBR), and Free Swell Index (FSI). A 1-D Consolidation Test was conducted, and changes in the soil during the test were examined by a scanning electron microscopic (SEM) analysis. The test results showed that there are increments in the UCS and CBR values with the reductions in the FSI, swell pressure, and swell potential of the treated soils.


Author(s):  
Chenglong Yin ◽  
Wei Zhang ◽  
Xun-li Jiang ◽  
Zhi-yi Huang

Initial water content significantly affects the efficiency of soil stabilization. In this study, the effects of initial water content on the compressibility, strength, microstructure and composition of a lean clay soil stabilized by compound calcium-based stabilizer were investigated by static compaction test, unconfined compression test, optical microscope observations, environment scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction spectroscopy. The results indicate that as the initial water content increases in the range studied, both the compaction energy and the maximum compaction force decrease linearly and there are less soil aggregates or agglomerations, and smaller proportion of large pores in the compacted mixture structure. In addition, for specimens cured with or without external water supply and under different compaction degrees, the variation law of the unconfined compressive strength with initial water content is different and the highest strength value is obtained at various initial water contents. With the increase of initial water content, the percentage of oxygen element tends to increase in the reaction products of the calcium-based stabilizer, whereas the crystalline mineral of the soil did not change obviously.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
J. Karthick ◽  
Ramkumar Thulasiram ◽  
S. Rajesh ◽  
M. Saravana Kumar ◽  
M. Thinakaranraj ◽  
...  

The objective of this paper is to determine the optimum fly ash content at which soil behavior is improved. Soil improvement is termed as soil stabilization. Soil stabilization depends on factors such as unconfined compression, cohesion, shear load, consolidation and permeability of soil and CBR value of soil. Fly ash is a thermal waste. Nearly half of the fly ash generated is not been used, hence usage of fly ash will reduce waste. Test conducted were sieve analysis, specific gravity, standard proctor compaction, unconfined compression, direct shear, free swell index, variable head permeability and consolidation for black cotton soil. Test also was conducted on soil replaced with fly ash in the level of 5%, 10% and 15%. Among the various replacement tried out, better results were observed for soil replaced with 10% of fly ash. Beyond the 10% level of replacement a reduction in performance was observed. Hence fly ash can be used for soil stabilization up to 10% replacement.


Author(s):  
Ade Indra Utama Lubis

Stabilization is one of the efforts to improve the condition of the soil which has a poor index of properties. One of the soil stabilization that is usually done is by adding chemicals to the soil. Chemicals commonly used in the form of cement, lime, bitumen. In this study, the stabilization of clay was carried out by adding gypsum and volcanic ash. The purpose of this study was to determine the value of the index properties due to the addition of 2% gypsum and volcanic ash on the clay soil, then to determine the maximum compressive strength value due to the addition of variations in stabilizing materials by testing the Unconfined Compression Test (UCT) and testing the California Bearing Ratio (CBR). ) laboratory. From the research, it was found that the original soil sample had a moisture content of 12.42%; specific weight 2.65; liquid limit 46.82% and plasticity index 29.40%. The original soil classification according to USCS is classified as Clay – Low Plasticity (CL) and according to AASHTO it is classified as A-7-6 (10). Unconfined Compression Test (UCT) values ​​for native soil and native soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2. The laboratory CBR values ​​for soaked and unsoaked for the original soil were 4.44% and 6.28%, respectively. While the laboratory CBR values ​​soaked and unsoaked for the original soil plus 2% gypsum were 6.74% and 8.02%, respectively.The most effective results were obtained from a mixture of 2% gypsum and 10% volcanic ash with a UCT value of 2.79 kg/cm2 (an increase of 99.28%). For laboratory CBR testing, the most effective mixture was on a mixed variation of 2% gypsum and 9% volcanic ash with laboratory CBR values ​​soaked and unsoaked of 9.07% (an increase of 104.27% from the original soil) and 10 ,29% (an increase of 63.85% from the original land). The soil that has been mixed with the most effective stabilizer material, namely 2% gypsum and 9% volcanic ash is classified as Clay - Low Plasticity (CL) based on the USCS classification and is classified as A-6 (4) based on the AASHTO classification.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Partab Rai ◽  
Wenge Qiu ◽  
Huafu Pei ◽  
Jihui Chen ◽  
Xufeng Ai ◽  
...  

The effectiveness of the use of waste fly ash (FA) and cement (OPC) in the stabilization of subgrade soils and the reasons likely to influence the degree of stabilization were investigated. Incorporating waste fly ash (FA) and cement (OPC) as additives leads to significant environmental and economic contributions to soil stabilization. This study involves laboratory tests to obtain the Atterberg limit, free swell index (FSI), the unconfined compressive strength (UCS), the California bearing ratio (CBR), and the scanning electron microscope (SEM). The test results for the subgrade soil illustrate that the Atterberg limit, plasticity index, and free swell index are decreasing with the addition of different proportions of fly ash and cement, i.e., 0%, 5%, 10%, 15%, and 20% and 0%, 2%, 4%, 6%, and 8%, respectively. The CBR value of untreated soil is 2.91%, while the best CBR value of fly ash and cement mixture treated soil is 10.12% (20% FA+8% OPC), which increases 71.34% from the initial value. The UCS of untreated soil is 86.88 kPa and treated soil with fly ash and cement attains a maximum value of 167.75 kPa (20% FA+8% OPC), i.e., increases by 48.20% from the initial value. The tests result show that the stability of a subgrade soil can be improved by adding fly ash and cement. While effectiveness and usability of waste FA and cement are cost-effective and environmentally friendly alternatives to expansive soil for pavement and any other foundation work in the future.


2013 ◽  
Vol 11 (3) ◽  
pp. 231-236 ◽  
Author(s):  
B.M. Patil ◽  
K.A. Patil

This paper deals with improvement of swelling characteristics of clayey soil by adding industrial waste and RBI Grade 81. The construction of road in clayey soil is challenging due to its more swelling and more shrinkage characteristics. To overcome this problem there are two solutions one is replace the clayey soil by good quality granular material. The second is stabilizing the subgrade clayey soil by using various industrial wastes. Generally pond ash, fly ash and stone dust are use for soil stabilization. The swelling and shrinkage characteristics of clayey soil are considerably improved if it treated with industrial wastes and RBI Grade 81. The RBI Grade 81 is chemical soil stabilizer. The differential free swell index (DFS) test was carried out on different mix of soil, industrial waste and RBI Grade 81. The result shows that the DFS index of untreated soil obtained is 65% reduces to 35% by addition of 20% fly ash and 4% RBI Grade 81. This reduction in DFS index helps to reduce the effect of moisture variation in clayey soil.


Author(s):  
Abdul Hudoos A ◽  
Dr.Premalatha. K

This paper presents the study of potential of bagasse ash with quarry dust to stabilize the clay soil. The evaluation involves the determination of the geotechnical properties of clay (CL&CI) soil in its natural state and also when mixed with various proportions of bagasse ash with quarry dust. The parameters tested include the specific gravity, particle size distribution, Atterberg’s limits, compaction characteristics, California bearing ratio (CBR) and the unconfined compressive strength (UCS). The strength test was repeated after curing period 0 day, 7days, 14days, and 28days of the treated samples. Results reveal that by addition of bagasse ash the geotechnical parameters of clay are improved as free swell index reduced by 89% for CL type soil and 60% for CI type soil. UCS increased by 56% and 11% for CL and CI type soil respectively. On addition of bagasse ash with quarry dust, soaked CBR increased 87%. Result also shows that curing improves strength of bagasse ash treated clay. These results imply that bagasse ash can be effectively used as an admixture to stabilize the clay soil as an alternative for soil sub grade in pavement of highway.


Soil strength plays a vital role in the construction field. The main purpose of this project is to stabilize red soil with the help of various waste materials. The waste materials used are rice husk ash, lime, ground granulated blast furnace slag and coconut coir fiber. These waste materials have been mixed with the soil in the ratio 10%, 20% and 30% and subjected to various tests Specific Gravity Test, Sieve Analysis Test, Plasticity Index Test, Standard Proctor Test, Unconfined Compression test and California Bearing ratio test. A comparative increase in soil strength was found with all the waste materials. Thus, ultimately the soil is stabilized with the help of these waste materials.


Sign in / Sign up

Export Citation Format

Share Document