MAQ

Author(s):  
Mamata Rath ◽  
Binod Kumar Pattanayak

Protected data transmission in cluster based Mobile Adhoc Networks (MANETs) is a challenging mission due to the high level of node mobility of nodes and resource constrained autonomous stations during packet routing. To target this mission, a Mobile Agent based QoS (MAQ) platform has been planned in this paper that uses an improved clustering algorithm during data communication. A Mobile agent architecture has been anticipated in a way that it is coupled with the cluster head of every cluster in MANET and when priority based real time application gets notified in these clusters then the proposed system gets activated to support prioritized service to these applications including checking and monitoring the flow characteristics for real time applications. JADE (Java Agent Development Environment) based prioritized scheme at the mobile agent has been implemented in the proposed system. As this is a function oriented approach, so the overall network performance significantly improves resulting better throughput and packet delivery ratio.

Wireless Sensor Networks (WSN) is a group of sensor devices, which are used to sense the surroundings. The network performance is still an issue in the WSN and an efficient protocol is introduced such as LEACH. To improve the stability, LEACH with fuzzy descriptors is used in preceding research. However the existing has drawback with effective group formation in heterogeneous WSN and also it is not achieved the Super Leader Node (SLH). To overcome the above mentioned issues, the proposed system enhances the approach which is used for increasing the energy consumption, packet delivery ratio, and bandwidth and network lifetime. The proposed paper contains three phases such as grouping formation, Leader Node (LN) selection, SLN selection with three main objectives:(i) to acquire Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN for grouping formation (ii)To design Low Energy Adaptive Clustering Hierarchy- Expected Residual Energy (LEACH-ERE) protocol for LN selection.(iii)To optimize the SCH selection by Particle Swarm Optimization (PSO) based fuzzy approach. The clustering formation is done by Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN. It is used to calculate the sensor nodes which have shortest distance between each node. The LEACH-ERE protocol was proposed to form a Leader Node (LN) and all the nodes has to communicate with sink through LN only. New SLN is elected based on distance from the sink and battery power of the node.


Secure data delivery, mobility, link lifetime, energy consumption and delay are the most important parameters to be highly concentrated in the self-organised network named manets. Where in Manets the nodes move unpredictably in any direction with restricted battery life, resulting in frequent change in topology and due to mobility the trust in packet delivery will suffer inside the network. These constraints are studied broadly to ensure the secured data delivery and the lifetime of such networks. In this paper we propose a PFCA(Predicted fitness based clustering) algorithm using fitness value. The cluster heads are selected based on the fitness value of the nodes. Whereas the fitness value is calculated using the trust value, link lifetime for different type of node mobility and energy consumed and the clusters are formed using the PFCA clustering algorithm. The proposed PFC algorithm is experimented in the NS-2 network simulator and the results are compared with the existing PSO-clustering algorithm. The results show the effectiveness of our proposed algorithm in terms of network overhead, average number of clusters formed, average number of re-clustering required, delay and packet delivery ratio.


2019 ◽  
Vol 8 (2) ◽  
pp. 1243-1248

In the real-time scenario involving wireless sensor networks, the data forwarding and data gathering procedures are taking place from the remote environment. With the involvement of heterogeneous architecture and multi-hop data transmission paths, there lies a serious threat for secured data communication. There may be chances of data attacks either from the inside intruder or from the external intruder. The problem of data flow attack by adding malicious information, viz. Data injection attack and outside arbitrary attack, viz. Byzantine attacks are found to be more dangerous and cause vulnerability for the wireless sensor network. So improving the reliability and security in multi-relay networks is very much essential. In this work, the practical approach of detecting data injection and Byzantine attacks using the proposed method of random network coding is performed. Then, as improvisation measure, the priority scheduling algorithm is implemented to effectively schedule the data transfer. Real-time packets with highest priority in the distribution queue are placed first in the processing mechanism. The remaining packets are arranged based on the position of the sensor nodes and are placed in separate queues. Least priority packets can obstruct the dispensation of their direct higher precedence packets after waitlisted for a certain number of time frames. Simulation results using the NS2 environment show that using the priority scheduling algorithm has good performance values in terms of the packet delivery ratio, throughput and delay. Also, the attack detection metrics such as false positive ratio and detection ratio are also improved when using the priority scheduling algorithm. Thus an improvised priority algorithm for an uplink scheduler in WSN is implemented to increase the performance and detection metrics.


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 504
Author(s):  
Khuram Khalid ◽  
Isaac Woungang ◽  
Sanjay Kumar Dhurandher ◽  
Jagdeep Singh ◽  
Joel J. P. C. Rodrigues

Opportunistic networks (OppNets) are a type of challenged network where there is no guaranteed of end-to-path between the nodes for data delivery because of intermittent connectivity, node mobility and frequent topology changes. In such an environment, the routing of data is a challenge since the battery power of the mobile nodes drains out quickly because of multi-routing activities such as scanning, transmitting, receiving, and computational processing, effecting the overall network performance. In this paper, a novel routing protocol for OppNets called Energy-Efficient Check-and-Spray Geocast Routing (EECSG) is proposed, which introduces an effective way of message distribution in the geocasting region to all residing nodes while saving the energy consumption by restricting the unnecessary packet transmission in that region. A Check-and-Spray technique is also introduced to eliminate the overhead of packets in the geocast region. The proposed EECSG is evaluated by simulations and compared against the Efficient and Flexible Geocasting for Opportunistic Networks (GSAF) and the Centrality- Based Geocasting for Opportunistic networks (CGOPP) routing protocols in terms of average latency, delivery ratio, number of messages forwarded, number of dead nodes, overhead ratio, and hop count, showing superior performance.


2016 ◽  
Vol 16 (3) ◽  
pp. 154-164 ◽  
Author(s):  
S. Ananda Kumar ◽  
P. Ilango ◽  
Grover Harsh Dinesh

Abstract Many studies have been proposed on clustering protocols for various applications in Wireless Sensor Network (WSN). The main objective of the clustering algorithm is to minimize the energy consumption, deployment of nodes, latency, and fault tolerance in network. In short high reliability, robustness and scalability can be achieved. Clustering techniques are mainly used to extend the lifetime of wireless sensor network. The first and foremost clustering algorithm for wireless sensor network was Low Energy Adaptive Clustering Hierarchy (LEACH). As per LEACH, some Cluster Head (CH) may have more nodes, some other may have less nodes, which affects the network performance. The proposed method MaximuM-LEACH provides a solution by load balancing the number of nodes equally by fixing the average value N, so the life time of the network is increased.


Wireless Sensor Network (WSN) is a collection of battery operated sensors deployed in the monitoring area. A massive quantity of energy of the nodes is used in the internal and external communications. There is a need of energy saving mechanism for effective and efficient communication. In this paper, we propose a new Modified-LEACH (MD-LEACH) protocol for enhancing the Quality of Services (QoS) parameters. This hierarchical routing protocol (MD-LEACH) is inspired by the k-means clustering technique to consolidate sensor networks into clusters and acquire an enhanced QoS parameter. The kmeans algorithm efforts to improve the clustering procedure of LEACH protocol using Euclidean distance and prolong the lifespan of the sensor network. This algorithm forms the optimized clusters by a distance of cluster head from cluster nodes and energy of the nodes for designated the cluster heads. To evaluate the performance of the proposed approach, we used NS-2 simulator, and consider the QoS parameter, namely: packet delivery ratio, energy consumption, bandwidth, and throughput. The simulations results show that the MD-LEACH algorithm outperforms then the LEACH protocol by optimizing all QoS parameters and improved network performance.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-14
Author(s):  
Ankit Temurnikar ◽  
Pushpneel Verma ◽  
Gaurav Dhiman

VANET (Vehicle Ad-hoc Network) is an emerging technology in today’s intelligent transport system. In VANET, there are many moving nodes which are called the vehicle running on the road. They communicate with each other to provide the information to driver regarding the road condition, traffic, weather and parking. VANET is a kind of network where moving nodes talk with each other with the help of equipment. There are various other things which also make complete to VANET like OBU (onboard unit), RSU (Road Aside Unit) and CA (Certificate authority). In this paper, a new PSO enable multi-hop technique is proposed which helps in VANET to Select the best route and find the stable cluster head and remove the malicious node from the network to avoid the false messaging. The false can be occurred when there is the malicious node in a network. Clustering is a technique for making a group of the same type node. This proposed work is based on PSO enable clustering and its importance in VANET. While using this approach in VANET, it has increased the 20% packet delivery ratio.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 562 ◽  
Author(s):  
J. K. Deepak Keynes ◽  
D. Shalini Punithavathani

As it is well known, in Wireless Sensor Networks, the sensor nodes will be either mobile or static. When mobility is concerned, on the whole network performance could be degraded, since the sensor nodes are furnished with restricted battery power, restricted memory, less computational ability and lower range of communication. So, a mechanism which is effective is needed there for forwarding the data packets with efficient energy management and coverage. With that note, the principle target of this work is to propose systematic method of CH selection based on the factors such as low mobility, density of the nodes and their remaining energy. Moreover, an innovative method called Node-Grade Based Clustering (NGBC) is proposed in this paper so as to select the CHs, studying the node’s energy and position regarding to their Base Station (BS), which will act as a sink for collected information. The CHs are replaced in every round based on its duty cycle on sensor nodes and Threshold Energy Rate (TER). Since the BS evaluates the quantity of every round a CH (Cluster Head) can sustain, it minimizes the quantity of energy consumed and increases the WSN’s lifetime. The results of the simulation demonstrate that the proposed algorithm attains higher coverage, efficiency in energy and network lifetime. Furthermore, the performance results in the work which is proposed, are distinguished with the algorithms proposed previously such as LEACH and HEED using some evaluation metrics like packet delivery ratio, throughput, energy consumption and end-to-end delay to prove the efficiency of energy efficient NGBC.  


Author(s):  
N. Srinivas Rao, Et. al.

Wireless sensor networks (WSNs) allocate thousands of cheap micro-sensor nodes to a hundreds to more than thousands of nodes in the reserved areas. In the WSN, sensor nodes control storage resources, calculating energy of nodes, power resources of nodes, and additional resources information on a sensor network. These micro-sensor nodes are key components of the Internet of Things (). WSNs are pre-arranged in clusters or groups to protect the ability for efficient data communication. Strong routing methods are required to maintain long network life and achieve high power usage. In this work, the new energy efficient ANFIS-based routing system for WSN enabled  to improve network performance. The proposed ANFIS-based routing involves a novel distributed clustering mechanism that activates the local configuration of local node energy equally across all sensors. A new technique for replacing clusters and rotating nodes with a centroid-based cluster head (CH) to distribute loads. The simulation results show that the proposed program will surpass conventional methods with 78% improvement over the lifetime of the network and 26% improvement in performance.


Author(s):  
R. Soundarya

Abstract: Wireless sensor networks are widely used due to its usage and advantages because it can utilize in mission critical tasks. One of the major issues in WSN is reliable data delivery without any loss and to increase network lifetime by utilizing energy efficient process. The objective of this work is to increase network lifetime at the same time ensuring high packet delivery ratio. Clustering is one of the best methods to increase network lifetime, however election process of cluster head will consume energy and reduces network performance. Therefore in proposed work, energy efficient cluster based routing protocol has been implemented which includes residual energy and distance as major parameter to form cluster. Cluster head selection will be a static process, once cluster is formed cluster head will be selected through election process after transaction the residual energy in CH will be checked with the threshold value and same CH will again act as head this reduces cluster formation and election process. In addition to provide secure data transaction MD5 algorithm has been implemented. Attack based data loss is also reduced and concentrated in proposed work to achieve objective of this work. Keywords: (SSCHS) Secure static cluster head selection, network lifetime, cluster, MD5 and Static cluster head.


Sign in / Sign up

Export Citation Format

Share Document