scholarly journals Shear Strength Characterization of Bauxite Deposits in Kuantan, East Coast Malaysia

Engineering characterization which are useful for "temperate" zone soils usually fail to predict the field performance of bauxitic soils, because the index tests upon which the characterization are based are not always reproducible for bauxitic soils. Fifteen (15) bauxitic soil of undisturbed and disturbed samples from 3 distinct sites in Kuantan, all derived from basalt parent rock but representing various stages of weathering were subjected to engineering and mineralogic tests. Values for cohesion and friction angles are evaluated. Soils from Semambu has the highest moisture content of 33.27%, the cohesion value is however lower compared to Bukit Goh which has moisture content of 21.74%. Study are further done to discover the relationship with cohesion and friction angles. Thus, by measuring the cohesion and friction angle can evaluate the performance of bauxite shear strength.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Feng-Chi Wang ◽  
Ming-Ze Zhao ◽  
Qi Sun

Carex shows strong vitality, adaptability, and performance with regard to soil consolidation and slope protection but is often disregarded as a weed. This study proposes to turn this so-called weed into treasure, using its characteristics to protect the slope. We studied the interaction between the carex roots and soil and compared it to other types of grass. To understand the interaction between the carex roots and soil, this study investigated the tensile properties of the carex root fibers. The effects of fiber content, humidity, distribution, and soil moisture content on the relationship between the shear strength and vertical pressure of the soil were analyzed using a direct shear test. Furthermore, the cohesion and internal friction angle were used to evaluate the shear strength of the root-fibered soil based on Mohr–Coulomb’s law. The results showed that the smaller the diameter, the shorter the length, and the greater the quantity and the lower the humidity of the root fibers, the higher the tensile strength of root fibers. In addition, the soil strength could be improved by the joint action of the roots and the soil. With an increase in the root fiber content and humidity, the soil moisture content decreased, whereas the shear strength of the carex-root-fibered soil increased. Here, four kinds of root fiber distributions, namely, “glyph,” “herringbone,” “eccentric,” and “vertical,” were chosen to study the shear strength of the root-fibered soil. The results showed that “glyph” root fiber distribution had the highest shear strength, while the shear strength decreased for the others.


2014 ◽  
Vol 635-637 ◽  
pp. 750-754
Author(s):  
Peng Hu ◽  
Qing Li ◽  
Yi Wei Xu ◽  
Nan Ying Shentu ◽  
Quan Yuan Peng

Expound the importance of soil shear strength measurement at mudslide hidden point to release the loss caused by the disaster, explain the relationship between shear wave velocity, moisture content and shear strength, design the shear strength monitoring system combining the shear wave velocity measured by Piezoelectric bender elements and moisture content.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Irfan Ahmad Afip ◽  
Siti Noor Linda Taib ◽  
Kamaruzaman Jusoff ◽  
Liyana Ahmad Afip

The general objective of this research was to measure the peat soil shear strength using Wenner four-point probes and vane shear strength methods. Specifically, the objective of this study was two-fold, namely, (a) investigating the relationship between laboratory soil resistivity and undrained shear strength and (b) determineing the relationship between in-situ soil resistivity and undrained shear strength. Data were randomly collected over six locations in Meranek, Sarawak, for in-situ test and three repetitions for each data were set based on three parameters. The selected parameters were soil density, moisture content, and salinity for both laboratory and in-situ test using Wenner four-point probes and vane shear method. The soil resistivity and vane shear strength readings for laboratory test were correlated with soil salinity, moisture content, and density. The R2 values showed a good correlation for soil salinity (R2 =0.8468) and density (R2 =0.9475), respectively. However, a weak correlation of R2 =0.1205 was observed for soil moisture. The R2 value for in-situ correlation between soil resistivity and three parameters (soil salinity, moisture content, and density) was R2 =0.8916. It can be concluded that the peat soil shear strengths of the study area using Wenner four-point probes from in-situ were (4.38 ohm.m) and laboratory was (2.47 ohm.m) and when using the vane shear strength method, in-situ was (23 kPA) and laboratory was (5 kPA). This study implies that the peat soil of the study area can be categorized as texture (soft loamy soil) and it is suitable for agriculture instead of construction. The relationship established between Wenner four-point probes and vane shear method can be beneficial for ground engineering design to enhance investigation on site suitability. Future work on DUALEM-421 technique should be emphasised for better subsurface exploration accuracy and resolve peat depth for an in-situ test.


2018 ◽  
Vol 206 ◽  
pp. 01002
Author(s):  
Zheng Su ◽  
Daokun Qi ◽  
Xinju Guo ◽  
Xiaojuan Xi ◽  
Liang Zhang

In recent years, engineering constructions increase rapidly in western and central areas of China, where expansive soil widely distributes. Since expansive soil is sensitive to water content, the characterization of its shear strength should be carefully conducted. For simplicity and ease of use, the Mohr-Coulomb criterion is often adopted to describe the shear strength of expansive soil. In this paper, the physical meaning of the cohesion and frictional strength of expansive soil are explained, and the variations of the strength parameters with water content are investigated. By fitting to the experimental results from direct shear test and triaxial tests, the changing characteristics of cohesion and friction angle with water content are obtained.


2013 ◽  
Vol 438-439 ◽  
pp. 1176-1180 ◽  
Author(s):  
Gao Feng Chen ◽  
Ying Fa Lv ◽  
Zhi Huai Huang ◽  
Yan Chang

The unconsolidated-undrained fast shear tests of saturated-unsaturated remolded soil samples under different moisture content which is 1.1%, 10.1%, 14.9%, 19.9%, 24.2%, 29.9%, 37.7% respectively, and normal stress which is 50kPa, 100kPa, 200kPa, 300kPa, 400kPa respectively, were studied by the modified SDJ-1-type strain direct shear apparatus and U.S. Lab VIEW data acquisition system. The shear strength parameters of unsaturated soil samples, i.e. general cohesion and general internal friction angle were obtained based on Mohr-Coulomb strength theory. The test results showed that the general cohesion firstly increased and then reduced with the moisture content increasing, and the general internal friction angle increased with the moisture content decreasing. The function between the general shear strength parameters and the moisture content was studied. The concept of general shear strength parameters was proposed in the paper, and would provide a simple and practical method to obtain the strength parameters for engineering practice.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Juan Wan ◽  
Jun Zhu ◽  
Henglin Xiao ◽  
Qiang Ma

In order to realize the resource utilization of fly ash, a kind of ecological slope protection substrate was prepared by mixing fly ash produced by MSW incineration into slope protection soil. Through the direct shear test and a leaching experiment on ion pollutants, the influence that shear strength of the substrate changed with root content, ash content, and moisture content and the ecological effects of leach liquor were investigated. The results showed the following: (1) When the optimum moisture content is about 24.9%, the shear strength of the substrate is the maximum. (2) Fly ash can improve the shear strength of the soil, which can reach 1.67 times as much as that of plain soil, and the optimum content of fly ash is 5%–6.7%. (3) The root system can increase the cohesion and internal friction angle of the substrate soil but mainly increases the cohesion of the substrate soil. (4) Plants grow taller in ash-mixed soil than in plain soil. (5) When the fly ash content is 20%, the ion concentrations of Cl, Cu, and Zn are the highest: 220.7, 0.153, and 1.526 mg/L, respectively. All of them are lower than the standard limit of class V water and gradually decrease with time. Therefore, the leaching liquid will not cause environmental pollution and meet the ecological requirements.


2014 ◽  
Vol 16 (1) ◽  
pp. 28-35 ◽  
Author(s):  
I. Hammouda ◽  
D. Mihoubi

Abstract This study deals with experimental thermodynamic and rheological characterization of kaolin. Water sorption isotherms of kaolin were determined for three temperatures (30, 50 and 70°C). Desorption isotherms were fitted by using five models (GAB, BET, Henderson modified, Adam and Shove, Peleg) among the most used ones in literature. The GAB model was found to be the most suitable for describing the relationship between equilibrium moisture content and water activity for the whole range of temperature (30-70°C) and relative humidity(0-100%). Desorption enthalpy and entropy were determined. The desorption enthalpy decreases with increasing moisture content. The density and the shrinkage of the material and the Young’s modulus variations as a function of moisture content were determined experimentally. The Young modulus varies between 0.1 MPa and 14 MPa. The viscoelastic parameters of kaolin were also determined by using a series of Prony.


2011 ◽  
Vol 347-353 ◽  
pp. 60-65
Author(s):  
De Jun Meng ◽  
Zhong Hui Sun ◽  
Bo Yang Dou ◽  
Peng Fei Han ◽  
Yan Bing Wang

The strength of gravel soil of Yili’s First Mine in different water contents was studied by multifunction static and dynamic triaxial test machine. The results show that (1)The yield limit decreases with the increasing of water content under steady confining pressure, and the greater the confining pressure, the greater the yield point of its axial in the same moisture conditions. (2)The expansion becomes into contraction with increasing moisture content. (3)Strength index of gravel soil becomes smaller with the increase of moisture content. The relationship between friction angle and water contents is . And the relationship between cohesion (or bite force) and water contents is . The results provide a theoretical basis for shaft design and construction of Yili’s First Mine.


Sign in / Sign up

Export Citation Format

Share Document