scholarly journals An Overview on Problem of Balancing Of DC Capacitor Voltage in Diode-Clamped Multilevel Inverter Using Boost Converter

10.29007/m2mq ◽  
2018 ◽  
Author(s):  
Shubham R. Patel ◽  
Gaurang K. Sharma ◽  
Ashish R. Patel

Multilevel inverter allows the production of high voltage with lower harmonic distortion in ac output and it eliminates the need of transformer. With the usage of multilevel inverter, we can get the required ac voltage output from multiple dc voltage rails. One of the disadvantage in it is the unbalancing of dc link capacitor voltage. The basic aim of this paper is the balancing of dc link capacitor voltage in diode-clamped multilevel inverter. There are different approaches which could be used for balancing of the capacitor voltage. In this paper, the method of additional auxiliary circuit in the form of Two-level Boost converter is being adopted to balance the inner capacitor voltages so as to get the required multilevel output. This balancing leads to the reliability in the inverter output voltage and extension in life of capacitor. The simulations for this are being performed in MATLAB SIMULINK® and the result are being analyzed for the same by employing it for different load condition. The scheme thus offer the proper balancing of capacitor voltage.

2019 ◽  
Vol 16 (1) ◽  
pp. 18 ◽  
Author(s):  
Thiyagarajan V ◽  
Somasundaran P

Multilevel inverter plays an important role in the field of modern power electronics and is widely being used for many high voltage and high power industrial and commercial applications. The objective of this paper is to design and simulate the modified asymmetric multilevel inverter topology with reduced number of switches. The proposed inverter topology synthesizes 21-level output voltage during symmetric operation using three DC voltage sources and twelve switches 8 main switches and 4 auxiliary switches. The different methods of calculating the switching angles are presented in this paper. The MATLAB/Simulink software is used to simulate the proposed inverter. The performance of the proposed inverter is analyzed and the corresponding simulation results are presented in this paper.


2019 ◽  
Vol 29 (01) ◽  
pp. 2050004
Author(s):  
Sidharth Sabyasachi ◽  
Vijay B. Borghate ◽  
Santosh Kumar Maddugari

This paper presents a module for single-phase multilevel inverter topology. The proposed module generates maximum 21-level bipolar output voltage with asymmetric sources without H-bridge. This results in reduction in filter cost and size. The module can be cascaded for high voltage applications. The same arrangement of voltage source magnitudes in first module is maintained in the remaining cascaded modules. The proposed topology is suitable for the applications like electric vehicle and emergency services like residences and hospitality industries, etc. A set of comparisons between the proposed and recently published topologies are provided to differentiate between them. The topology is simulated and verified in MATLAB/SIMULINK. A hardware prototype is developed in the laboratory for experimental confirmation with various conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Aparna Prayag ◽  
Sanjay Bodkhe

In this paper a basic block of novel topology of multilevel inverter is proposed. The proposed approach significantly requires reduced number of dc voltage sources and power switches to attain maximum number of output voltage levels. By connecting basic blocks in series a cascaded multilevel topology is developed. Each block itself is also a multilevel inverter. Analysis of proposed topology is carried out in symmetric as well as asymmetric operating modes. The topology is investigated through computer simulation using MATLAB/Simulink and validated experimentally on prototype in the laboratory.


2019 ◽  
Vol 8 (3) ◽  
pp. 6584-6591

In recent days, multilevel inverter has widely been used for high power application. This may be due to the reduction of total harmonic distortion (THD) of the output voltage level and having low blocking voltages of switches. In the existing system, DC voltage source which is maintained constant is given as the input to the inverters which contains the series connection of fundamental block and is analyzed in symmetric and asymmetric mode of operation to produce various voltage levels. The proposed approach replaces the DC voltage source to the Photovoltaic (PV) cell has been used which has variations in the output voltage side depends on the solar irradiation level. This Photovoltaic cell uses Maximum Power Point Tracking (MPPT) algorithm to produce required voltage. As the input to the multilevel inverter (MLI) has to be maintained constant a fly back forward converter has been used in between the Photovoltaic cell and the multilevel inverter, so that the required multiple constant output voltage has been obtained on the output of the converter. Using the output of the converter 13 output voltage levels can be obtained from the multilevel inverter. The performance of the proposed system is verified by simulation through MATLAB/Simulink environment


Author(s):  
Jayesh B. Patil

This article builds a symmetric hybridized cascaded a switching capacitor unit in a multilayer inverter and compares it to For 17 level inverters, A switched capacitor unit is utilized with an asymmetric multilevel inverter. In the symmetric hybridized multilevel inverter design, a In the midst of a dual-input dc source, there is a bi-directional switch is utilized to create a modified H-bridge inverter with a five-level output voltage instead of three. In the proposed scenario, In an asymmetric multilevel inverter, the switched capacitor unit substitutes the dc sources. which enlarges By a factor of two, The output voltage has been increased. and the voltage levels at the loads are increased by a factor of two. MATLAB-SIMULINK was used to verify the suggested topology using the staircase modulation approach. The findings show that multilayer inverter topologies with low total harmonic distortion, fewer switches, With greater levels of output voltage are better stable during load disturbance circumstances, making them ideal for renewable energy applications.


2020 ◽  
Vol 1 (2) ◽  
pp. 144-149
Author(s):  
Muldi Yuhendri ◽  
Randy Setiawan

Direct current (dc) voltage sources are one of the voltage sources most widely used for various purposes. Dc voltage can be obtained from a dc generator or by converting an ac voltage into a dc voltage using a power converter. There are several dc voltage levels that are commonly used by electrical and electronic equipment. To get a dc voltage that can be used for various equipment, then a dc voltage source must be varied according to the required. One way to get a variable dc voltage is to use a dc-dc converter. This research proposes a dc-dc boost converter that can increase the dc voltage with varying outputs. The boost converter is proposed using Arduino Uno as a controller with an input voltage of 12 volts. The converter output voltage regulation is implemented through Arduino programming using Matlab simulink. The experimental results show that the boost converter designed in this study has worked well as intended. This can be seen from the boost converter output voltage which is in accordance with the reference voltage entered in the Matlab simulink program


This paper proposes harmonic comparison between symmetrical and asymmetrical CHB MLI using multiple carrier based phase disposition PWM technique (PDPWM). Topologies of different multilevel inverter are reported in the literature, but mainly this work focuses on the harmonic comparison of symmetrical and asymmetrical cascaded MLI with same count of sources and switches. In this paper, PWM switching technique for harmonic comparison of both symmetrical and asymmetrical cascaded MLI is PD. Total harmonic distortion is analyzed in FFT window. Results are observed in SIMULINK/MATLAB software. In these comparative results we can see that an asymmetrical configuration is producing higher voltage levels in voltage output with equal quantity of component compared with the 5-level symmetric inverter and this could lead towards the reduction in harmonic content of output voltage. The benefits of this method of control are applicability and simplicity for n-levels MLI, with no any considerable change in the control circuitry. The experimental measurement results validate proper operation of the discussed MLI.


2017 ◽  
Vol 27 (04) ◽  
pp. 1850055 ◽  
Author(s):  
Kishor Thakre ◽  
Kanungo Barada Mohanty ◽  
Vinaya Sagar Kommukuri ◽  
Aditi Chatterjee

Nowadays, multilevel inverters (MLI) are receiving remarkable attention due to salient features like less voltage stress on switches and low total harmonic distortion (THD) in output voltage. However, the required switch count increases with number of voltage levels. This paper presents a new topology for asymmetric multilevel inverter as a fundamental block. Each block generates 13-level output voltage using eight switches and four unequal dc voltage sources. The proposed configuration offers special features such as reduced number of switches, isolated dc sources, cost economy, less complex and modular structure than other similar contemporary topologies. Moreover, significant reduction in voltage stress on the circuit switches can be achieved. Comparative studies of proposed topology with the conventional and recent topologies have been presented in terms of power switches, gate driver circuit requirement, isolated dc voltage sources and total standing voltage. Multicarrier-based sinusoidal pulse width modulation (SPWM) scheme is adopted for generating switching signals using dSPACE real-time controller. In addition, proposed topology offers a fewer number of ON-state switches that lead to reduction in power loss. The proposed topology is validated through simulation and experimental implementation.


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
N.S.M. Nazar ◽  
S. Thanakodi ◽  
N.A. Othman ◽  
H.D.M. Hidzir ◽  
M.S. Mat

It has been accepted that conventional inverters have limitation dealing with high voltage and high power applications. Lately, multilevel inverters are popular for high power applications due to its improved harmonic profile and increased power ratings. There are various literatures regarding topology and control techniques of multilevel inverters. This paper presents the performance of two Flying Capacitor Multilevel Inverter (FCMI) topologies particularly a 3-level and 5-level multilevel inverters. Besides that, concept of the topologies and its modulation techniques were described. Sinusoidal pulse width modulation (SPWM) techniques were utilized in this paper as the topologies control strategy. Two control parameters, namely the amplitude modulation index, ma and the frequency modulation index, mfwere varied in order to control the output voltage of the inverters. The model and simulation study were carried out using Matlab/Simulink software. Analyses on the performance of the two topologies were based on the fundamental voltage, output voltage waveform, output harmonic spectrum and total harmonic distortion (THD). It’s found that the five level FCMI have shown better performance in terms of THD compared to the three level FCMI in all conditions of varied ma and mf. Based on the study also, five level FCMI shows a better voltage output waveform; close to a sinusoidal waveform compared to the three level FCMI.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 55
Author(s):  
Anuja Prashant Diwan ◽  
N Booma Nagarajan ◽  
T Murugan ◽  
S Ashrafudeen ◽  
G J. Jenito Paul

In this paper, single phase nine level cascaded multilevel inverter using trinary voltage source is described. Normally for getting nine level MLI output, four H-Bridges are required. But in proposed method, nine level output is achieved by using two H-Bridges only. Performance of Multilevel inverter is improved by using modular switching pattern. This method reduces the number of switches to the half and thus reduces switching losses. Since the number of levels at the output voltage is increased, Total Harmonic Distortion (THD) gets reduced significantly. This presents simple configuration is simple and can be controlled easily. MATLAB-SIMULINK is used to validate the results of proposed technic, simulation is carried out using. The proposed method has been exhaustively compared with classical cascaded H-Bridge topology. 


Sign in / Sign up

Export Citation Format

Share Document