scholarly journals Drilling Tool Geometry Effects on the Hole Quality of Glare

Recently machining of hybrid stacking materials are much interested and challenging in manufacturing domains. Mostly, drill hole quality depends the machining parameters and type of cutting tool. This work investigates the experimental study for effects of drill bit geometry on hole quality of glass laminate aluminum reinforced epoxy (GLARE). GLARE have manufactured by alternative stacking of aluminum (AA7475) and glass fiber (E-glass)/epoxy composite through compression molding machine. Machining of GLARE by using of Computer numerical controller. Hole quality were studied with the aid of optical microscopic. Results show that a drill tip geometry to promote the reduction of delamination and structural damage. Superior hole quality is achieved with 2 fluted drill bit than 3 fluted drill bit.

2013 ◽  
Vol 845 ◽  
pp. 819-830
Author(s):  
Masoud Askari Hoseiny ◽  
Reza Moghiseh-E ◽  
Amir Alinaghizadeh ◽  
Payam Soltani ◽  
Vahid Majidi Hachesoo

The purpose of this study was to find experimentally the effects of concave and convex major cutting edge (Helical & Recon point) and chisel point on the drilling composite. Due to composite materials are natural orthotropic, so gradually these materials are substituted by some metals such as steel that are used in manufacturing automobile and aerospace and other industris. Because of increasing composites utilization in industries, it is necessary to stabilize and set standards of machining parameters. Drilling is the main machining operation in producing process for assembled the composite work piece. So the quality of drilling hole should be considered to avoid snapping mechanical structure. Tool geometry is one of the most important factors in the drilling process. If it is neglected, the thrust forced increase, and it causes damage around the hole such as delamination, large entrance and exit burr, and induced cracks. The most damaging in drilling FRP is delamination of the composites lamina that occurs when drill bit is entered and exited. In the other hand, this study used ANSYS finite element software to determine the value of stress in composite plate and use to analyze for designing the jig & fixture in this drilling process. In conclusion, with comparing delamination, the best geometry tool introduced for the lowest amount of damage.


2009 ◽  
Vol 3 (5) ◽  
Author(s):  
Azlan Abdul Rahman ◽  
Azuddin Mamat ◽  
Abdullah Wagiman

2015 ◽  
Vol 105 (07-08) ◽  
pp. 501-507
Author(s):  
L. Heberger ◽  
S. Nissle ◽  
M. Gurka ◽  
B. Kirsch ◽  
J. C. Aurich

Beim Bohren von kohlefaserverstärktem Kunststoff treten verstärkt Schädigungen wie Delaminationen und Faserüberstände auf. Mit dem Ziel die Bohrlochqualität zu verbessern, wurde der Einfluss der Werkstückeinspannung hinsichtlich Einspanngeometrie, -kraft und -material untersucht. Zusätzlich zur konventionellen optischen Delaminationsmessung wurde die äußere und die innere Delamination mittels Mikrocomputertomografie analysiert. Durch eine Optimierung der Einspannung konnte die Bohrlochqualität gesteigert werden.   When drilling carbon fiber reinforced polymers damages like delamination and fiber protrusion appear. Aiming to improve the drill hole quality, the influence of the fastening device with respect to fastening geometry, force and material is analyzed. In addition to the conventional optical delamination measurement, the outer and inner delamination is investigated by micro computer tomography. The optimization of the fastening device leads to a higher drill hole quality.


Author(s):  
S. Saravanamurugan ◽  
B. Shyam Sundar ◽  
R. Sibi Pranav ◽  
A. Shanmugasundaram

2011 ◽  
Vol 697-698 ◽  
pp. 125-128
Author(s):  
Shen Yung Lin ◽  
Y.H. Lin ◽  
M.S. Hsu

After the processing of a clock dial, the precision dimension and uniform distribution of the tool-trace pattern on the dial surface have a connection with luster image and attractiveness, which in turn would have an impact on the additional values and prices for a clock. Through a systematic investigation among the lathe structure, process parameter and cutting-tool geometry in advance, the total results indicated that the rigidity of the lathe structure and the precision of the slider movements are excellent and they had only a little effect on the surface-related quality for a dial face turning. Hence, the combination of process parameter and cutting-tool angle becomes more essential. End face turning simulation and experiment of a copper alloy were thus conducted in this paper, and the chip formation process and machined surface-related quality are investigated, respectively. The effects of cutting tool geometry and process parameter on the results of chip formation, surface rough, tool-trace pattern and luster uniformity are investigated, and these results are also compared with each other. The results show that when larger clearance and rake angles used in conjunction with a lower feed rate, no matter how much cutting speed was enhanced, the surface-related quality of a dial surface is not good. However, when these two larger angles used combined with a larger feed rate, the quality of a dial surface would slightly be improved. By using smaller clearance and rake angles along with the higher feed rate and cutting speed would obtain a better surface-related quality with uniform luster and attractiveness.


2016 ◽  
Vol 880 ◽  
pp. 33-36 ◽  
Author(s):  
Saad Waqar ◽  
Saad Asad ◽  
Shamraiz Ahmad ◽  
Ch Asad Abbas ◽  
Hassan Elahi

In past few decades, a lot of research has been done in the field of machining to improve the quality of machined surface. Out of these machining operations, drilling is widely used in the areas of marine and aerospace for assembly requirements. Titanium alloy Ti-6Al-4V, owing to its vast applications, is regarded as an important material for these industries. Ti-6Al-4V is categorized as difficult to machine material. Based on above stated facts, an experimental study was conducted on the dry drilling of Ti-6Al-4V. The objective of this study was to establish the correlations between drilling parameters such as feed rate and spindle speed, and quality of machined surface which is evaluated in terms of drill hole diameter deviation, exit burr height and surface roughness.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


Sign in / Sign up

Export Citation Format

Share Document