scholarly journals Maturity of Fruit Identifier by using TCS 3200 Sensor

2020 ◽  
Vol 8 (5) ◽  
pp. 1611-1614

As we all know that India is an agricultural country here agriculture is a big part of the economy. So this industry plays very important role in Indian economy. As this is a huge industry so it need a large number of human effort. So to reduce that human effort and to increase the production we have to go for automation. For considering these things we are making this project. For identification of color we are using TCS 3200 sensor. This sensor has four LED’s with it which will emit white light on the object. Then object will reflect those rays towards the sensor which is situated in between those four LED’s. Now with the help of its construction and design sensor sense the color of the object. Here we have used raspberry pi as a controller which has been programmed previously for taking the actions. We are using python language to program raspberry pi.

Author(s):  
Tejal Adep ◽  
Rutuja Nikam ◽  
Sayali Wanewe ◽  
Dr. Ketaki B. Naik

Blind people face the problem in daily life. They can't even walk without any aid. Many times they rely on others for help. Several technologies for the assistance of visually impaired people have been developed. Among the various technologies being utilized to assist the blind, Computer Vision-based solutions are emerging as one of the most promising options due to their affordability and accessibility. This paper proposes a system for visually impaired people. The proposed system aims to create a wearable visual aid for visually impaired people in which speech commands are accepted by the user. Its functionality addresses the identification of objects and signboards. This will help the visually impaired person to manage day-to-day activities and navigate through his/her surroundings. Raspberry Pi is used to implement artificial vision using python language on the Open CV platform.


2020 ◽  
Vol 3 (2) ◽  
pp. 298-308
Author(s):  
Uci Rahmalisa ◽  
Mardeni Mardeni ◽  
Rialtra Helmi ◽  
Arie Linarta

Keep a pet at home takes time and effort. For people who have very dense flurry of activity certainly keep a pet such as a cat would be very hard to do. A Raspberry Pi microcontroller is designed for the purpose of automatic feeding so it is easy to use. The workings of the tool are automatic scheduling using an Android-based smartphone so that the servo motor will open and close so that the cat food is taken out into the food container that has been provided. By using an Android-based smartphone, the feeding schedule can be set by the hour for each funnel. Equipped with a buzzer as a reminder of cat owners if the available food stock is low and must be immediately refilled. The programming language used is Python language. Based on testing and performance of "Automatic Cat Feeding Using Raspberry Pi Android Based" has shown results in accordance with the design that is able to open and close the funnel that fills the cat food container with a servo motor automatically by setting a predetermined time.


Author(s):  
Prajwal Chandrakant Sapkal

In this project, we are going to present a system for sleep detection alarm to monitor the driver, based on the real time surveillance and alert him as well as post it at remote location whenever it’s necessary using cloud platform. This device is to be developed using the Raspberry Pi, Open CV library and camera module. The required coding part of the project will be done using Python language. The main component of the project will be pretrained landmark detector as a software part. It identifies 68 points on the human face. The Dlib’s landmark will detect 68 facial landmarks which enables us to extract the various facial structures using simple Python array slices. The facial landmarks of fully closed eye and a fully opened eye will be first plotted. This data is further processed and tested with some results which will give the information about driver’s alertness. Once the facial landmarks associated with an eye are determined, we can apply the Eye Aspect Ratio (EAR) algorithm. In our case, we’ll be monitoring the eye aspect ratio to see if the values of the facial landmarks, thus implying that the driver/user has closed their eyes or distracted from driving or yawn. Once implemented, our algorithm will start by localising the facial landmarks on real time basis. We can then will be able to monitor the eye aspect ratio to determine if the eyes are close or nearly close which will be the indicator for driver is falling asleep. And then finally raising an alarm if the eye aspect ratio is below a pre-defined threshold for a sufficiently long amount of time. The alarm will be loud enough to wake up the driver and bring back his attention. At the same time data is passed to remote location using cloud whenever it’s necessary.


2022 ◽  
pp. 842-858
Author(s):  
Segun Aina ◽  
Samuel Dayo Okegbile ◽  
Perfect Makanju ◽  
Adeniran Ishola Oluwaranti

The need to remotely control home appliances is an important aspect of home automation and is now receiving lot of attentions in the literature. The works so far are still at a development level making further research necessary. This article presents a framework for chatbot-controlled home appliance control system and was implemented by programming a Raspberry Pi using the Python language while the chatbot server was also implemented using a Node.js on JavaScript. The Raspberry Pi was connected to the chatbot server via Wi-Fi using a websockets protocol. The chatbot server is linked to Facebook Messenger using the Messenger Application Protocol Interface. Messages received at the chatbot server are analyzed with RasaNLU to classify the user's intention and extract necessary information which are sent over websocket to the connected Raspberry pi. The system was evaluated using control precision and percentage correct classification with both producing a significant level of acceptance. This work produced a Facebook Messenger chatbot-based framework capable of controlling Home Appliances remotely.


2021 ◽  
Vol 20 (4) ◽  
pp. 209-214
Author(s):  
Polaiah Bojja ◽  
N. Merrin Prasanna ◽  
Pamula Raja Kumari ◽  
T. Bhuvanendhiran ◽  
Panuganti Jayanth Kumar

In the cement factories, a rotary kiln is a pyro-processing device that is used to raise the temperature of the materials in a continuous process. Temperature monitoring is an essential process in the rotary kiln to yield high quality clinker and it has been implemented using various image processing techniques. In this paper we are measuring and controlling the temperature of rotational kiln in cement industry to get proper clinker ouput. Burning zone flame images are captured using CCD(Charge Coupled Device) camera and are processed using image processing with PID(Proportion Integration and Derivative) controller and which are programmed on raspberry pi card with the help of python language, also the captured images and attributes are transferred to authorized mobile/pc through Raspberry PI by selecting the IP address of mobile or PC. All the attributes received in the mobile in the form of web page the according to the object following data temperature controlled and object is ceaselessly followed to get the proper clinker output. Picture handling calculation with Open cv, as indicated by the calculation the edge estimation of the camera is settled. The frame value of the camera is set. Conversion from RGB color space to HSV color space is achieved and the reference color threshold value is determined. The range esteem estimated by the camera is contrasted and the reference esteem. In this study temp of rotational kiln is measured effectively using PID controller, this controller continuously control the temperature of revolving kiln by varying the i/p images of burning zone at finally fix one flame which is giving 1400degc.


2020 ◽  
Vol 12 (6) ◽  
pp. 475-489
Author(s):  
Bahman A. Sassani ◽  
Noreen Jamil ◽  
Maria Villapol ◽  
M. Abbas Malik ◽  
Sreenivas Sremath Tirumala

Internet of Things (IoT) based systems have revolutionised the way real world systems are inter-connected through internet. At present the application of IoT based systems is extend to real time detection and warning system. However, cost has been a major factor for development and implementation of IoT systems. Considering the cost, ease of implementation, this paper proposes a low cost yet efficient IoT system called FireNot for warning and alerting fire incidents. FireNot is a cloud based system that uses sensors (hardware) to detect fire and alert the user through internet and is maintained and monitored using a simple Android app. The FireNot system uses Raspberry Pi programmed through Python language and utilises Google API for location detection. The FireNot system is also intended to provide an expandable platform for additional daily monitoring tasks and more importunately, resiliency against most cyber-attacks and hi-jacking that targets IoT-based system lacked in most of similar IoT-based designs. This paper practically demonstrates the FireNot system through extensive testing on various operations and the FireNot system is proven to be efficient.


2019 ◽  
Vol 10 (2) ◽  
pp. 18-33 ◽  
Author(s):  
Segun Aina ◽  
Samuel Dayo Okegbile ◽  
Perfect Makanju ◽  
Adeniran Ishola Oluwaranti

The need to remotely control home appliances is an important aspect of home automation and is now receiving lot of attentions in the literature. The works so far are still at a development level making further research necessary. This article presents a framework for chatbot-controlled home appliance control system and was implemented by programming a Raspberry Pi using the Python language while the chatbot server was also implemented using a Node.js on JavaScript. The Raspberry Pi was connected to the chatbot server via Wi-Fi using a websockets protocol. The chatbot server is linked to Facebook Messenger using the Messenger Application Protocol Interface. Messages received at the chatbot server are analyzed with RasaNLU to classify the user's intention and extract necessary information which are sent over websocket to the connected Raspberry pi. The system was evaluated using control precision and percentage correct classification with both producing a significant level of acceptance. This work produced a Facebook Messenger chatbot-based framework capable of controlling Home Appliances remotely.


Automation is the process of monitoring the home that can transform the home from being manual and static to a smart and dynamic one [1]. Life is getting simpler and more comfortable in all spheres with the use of technology and innovation. This paper proposes the Internet of Things (IoT) based home automation using raspberry pi 3 b. This system consists of a smart phone with a mobile application called Blynk which is having home appliances details with switches to ON and OFF the home appliances. We also included Garden irrigation and Gas detection system for less human effort, more convenience and more comfortable to the user for complete home automation. We used MQ-2 gas sensors for gas leakage detection and FC-28 for garden irrigation. In this paper home appliances are controlled through Wi-Fi technology [2].


Author(s):  
Julio Vega ◽  
José M. Cañas

This paper presents the robotic platform, PiBot, that has been developed and that is aimed at improving the teaching of Robotics with vision to secondary students. Its computational core is the Raspberry Pi 3 controller board, and the greatest novelty of this prototype is the support developed for the powerful camera mounted on board, the PiCamera. An open software infrastructure written in Python language was implemented so that the student may use this camera, or even a WebCam, as the main sensor of this robotic platform. Also, higher level commands have been provided to enhance the learning outcome for beginners. In addition, a PiBot 3D printable model and the counterpart for the Gazebo simulator were also developed and fully supported. They are publicly available so that students and educational centers that do not have the physical robot or can not afford the costs of these, can nevertheless practice and learn or teach Robotics using these open platforms: DIY-PiBot and/or simulated-PiBot.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 95
Author(s):  
Dr Bageshree Pathak ◽  
Shriyanti Kulkarni

The transfer of manual controls to machine controls is automation. Automation is the need of the hour. Home automation is automation of home systems to create smart homes. It includes security systems, appliance control and environment control. The increasing need for safety and security has brought biometric security systems to the forefront. Speech being unique and individualistic can be used for biometric identification. The proposed system is a prototype which can be fitted for speaker recognition for home security. The system will identify the registered speakers and will allow access to the recognized speaker. The system is implemented on Raspberry pi platform using Python language.  


Sign in / Sign up

Export Citation Format

Share Document