scholarly journals Diagnosis of Malaria from Peripheral Blood Smear Images using Convolutional Neural Networks

2019 ◽  
Vol 8 (4) ◽  
pp. 12461-12464

Malaria is a deadly disease brought about by Plasmodium parasites which affects the general population through the bites of female mosquitoes, called "malaria vectors." There are about five parasites species that cause malaria in human body, and two of the species namely P. falciparum , P.vivax pose the greatest threat. The most prominent technique to detect malaria is by taking blood smear samples to check if the RBC is affected by parasite under the microscope by qualified experts. It is a complex technique and the diagnosis depends on the experience and inside of the person who performs the examination. Malaria blood smear have been diagnosed earlier using image processing methods based on machine learning. This was not effective so far. Convolutional Neural Network (CNN) is use in this system which helps in classifying the cells present in the blood smear images as infected or uninfected

Author(s):  
Abhinav N Patil

Image recognition is important side of image processing for machine learning without involving any human support at any step. In this paper we study how image classification is completed using imagery backend. Couple of thousands of images of every, cats and dogs are taken then distributed them into category of test dataset and training dataset for our learning model. The results are obtained using custom neural network with the architecture of Convolution Neural Networks and Keras API.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


2018 ◽  
Vol 10 (4) ◽  
pp. 140-155 ◽  
Author(s):  
Lu Liu ◽  
Yao Zhao ◽  
Rongrong Ni ◽  
Qi Tian

This article describes how images could be forged using different techniques, and the most common forgery is copy-move forgery, in which a part of an image is duplicated and placed elsewhere in the same image. This article describes a convolutional neural network (CNN)-based method to accurately localize the tampered regions, which combines color filter array (CFA) features. The CFA interpolation algorithm introduces the correlation and consistency among the pixels, which can be easily destroyed by most image processing operations. The proposed CNN method can effectively distinguish the traces caused by copy-move forgeries and some post-processing operations. Additionally, it can utilize the classification result to guide the feature extraction, which can enhance the robustness of the learned features. This article, per the authors, tests the proposed method in several experiments. The results demonstrate the efficiency of the method on different forgeries and quantifies its robustness and sensitivity.


2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


Author(s):  
Gerardo Schneider ◽  
Alejandro Javier Hadad ◽  
Alejandra Kemerer

Resumen En este trabajo se presenta una implementación de software para la determinación del estado de plantaciones de caña de azúcar basado en el análisis de imágenes aéreas multiespectrales. En la actualidad no existen técnicas precisas para estimar objetivamente la superficie de caña caída o volcada, y esta ocasiona importantes pérdidas de productividad en la cosecha y en la industrialización. Para la realización de éste trabajo se confeccionó un dataset referencial de imágenes, y se implementó un software a partir del cual se obtuvieron indicadores propuestos como representativos del fenómeno agronómico, y se realizaron análisis de los datos generados. Además se implementó un software clasificador referencial basado en redes neuronales con el que se estimó la fortaleza de dichos indicadores y se estimó la superficie afectada en forma cuantitativa y espacial. Palabras ClavesCaña de azúcar, cuantificación, volcado, red neuronal, procesamiento de imagen   Abstract In this paper we present a software implementation for determining the status of sugarcane plantations based on the analysis of multispectral aerial images. Currently there are no precise techniques to estimate objectively the cane area fall or overturned, and this causes significant losses in crop productivity and industrialization. For the realization of this work a dataset benchmark images was made, and a software, from which were obtained representative proposed indicators for the agronomic phenomenon was implemented, and analyzes of the data generated were realized. In addition, we implemented a software benchmark classifier based on neural networks with which we estimated the strength of these indicators and the area affected was estimated quantitatively and spatially. Keywords Sugarcane, quantification, fall, neural network, image processing


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


Sign in / Sign up

Export Citation Format

Share Document