scholarly journals Performance of Photocatalytic Concrete using Sinicon PP, Rice husk ash and Titanium-dioxide

2020 ◽  
Vol 8 (6) ◽  
pp. 5719-5724

The Photocatalytic Concrete helps to reduce the air temperature in urban environment and eventually reduce quantity of smoke. Titanium Dioxide (Tio2 ), a nano material was used as a catalytic material to produce Photocatalytic concrete, In this study, M20 grade concrete was prepared by partially replacing. Fine aggregate with sinicon PP at varying proportion of 0%, 5%, 10%, 15% and 20%, which is light weight material and has very low specific gravity compared to normal fine aggregate and also the cement being constantly replaced by Tio2 and Rice husk ash as 1% and 10% respectively. The effect of Tio2 , Sinicon PP and Rice husk ash was investigated through mechanical and durability properties and also emission test was carried out to compare the amount of gases released in both conventional concrete and photocatalytic concrete

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Tariq Ali ◽  
Abdullah Saand ◽  
Daddan Khan Bangwar ◽  
Abdul Salam Buller ◽  
Zaheer Ahmed

In today’s world, the implementation of industrial ecology for sustainable industrial development is a common practice in the field of engineering. This practice promotes the recycling of by-product wastes. One of those by-product wastes is rice husk ash. This paper describes an investigation into the effect of rice husk ash (RHA) as a partial replacement for cement, to produce lightweight, aerated concrete. Type I Portland cement, fine aggregate, and aluminum powder as an aerating agent were used in this study. The RHA was used in different replacement levels, i.e., RHA was used to replace cement at 0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight. Aluminum powder was added during mixing at 0.5% by weight of binder to obtain lightweight, aerated concrete. Test results are presented in terms of physical, mechanical, and durability aspects that include density, compressive strength, split tensile strength, and flexural strength of concrete cured at different curing regimes, i.e., 3, 7, 28, and 90 days along with corrosion analysis, and sulphate attack at 28 days of curing. The test results show that using 10% RHA as a partial replacement of cement in aerated concrete is beneficial in triggering the strength and durability properties of concrete.


InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2016 ◽  
Vol 692 ◽  
pp. 94-103
Author(s):  
S.S. Samantaray ◽  
K.C. Panda ◽  
M. Mishra

Rice husk ash (RHA) is a by-product of the rice milling industry. Near about 20 million tonnes of RHA is produced annually which creates environmental pollution. Utilization of RHA as a supplementary cementitious material adds sustainability to concrete by reducing CO2 emission of cement production. But, the percentage of utilization of RHA is very less. This paper presents the results of an experimental investigation to study the effects of partial replacement of fine aggregate with RHA on mechanical properties of conventional and self-compacting concrete (SCC). The fine aggregate is replaced by RHA in conventional concrete (CC) with six different percentage by weight such as 0%, 10%, 20%, 30%, 40% and 50% having w/c ratio 0.375 with variation of super plasticiser dose, whereas in SCC the replacement of fine aggregate by RHA is 0%, 10%, 20%, 30%, 40%. The design mix for CC is targeted for M30 grade concrete. The fresh concrete test of SCC is conducted by using slump flow, T500, J-ring, L-box, U-box and V-funnel to know the filling ability, flow ability and passing ability of SCC. As fresh concrete property concerned, the result indicates that the slump flow value satisfied the EFNARC 2005 guidelines upto 30% replacement of fine aggregate with RHA whereas 40% replacement did not satisfy the guideline. As hardened concrete property concerned, the compressive strength, split-tensile strength and flexural strength of CC and SCC are determined at 7, 28 and 90 days. The test result indicates that upto 30% replacement of fine aggregate with RHA enhances the strength in CC whereas the strength enhancement in SCC upto 20% replacement.


The degree of this view is to redesign the undertaking capacity of the supportable use of quarry soil, and to discover any gaps in present day-day know-how. The time allotment affordable usage construes the utilization of quarry buildup to their complete capacity to meet the dreams of the overwhelming, on a comparative time as on the vague time keeping up customary resources and finding strategies to restrain the natural impacts related both with quarry fines gathering and use. Solid mixes had been casted the use of standard stream sand and in evaluation with 25%,50%,75%, 100% open entryway with quarry soil in blend with waste plastic in fabriform. . The development of quarry dust near to squander plastic certainly improved the strong structure homes with respect to power and vulnerability block. The development of significant worth quarry dust with ldpe as waste plastic in strong incited impelled system densification in assessment to conventional concrete. System densification has been considered abstractly through petro graphical test using virtual optical microscopy. The shape modified into evaluated using SEM in quarry dust and ldpe composites.


Author(s):  
Mohammed Sohel Ahmed

Abstract: As the demand for the structural members application in the concrete industry is continuously increasing simultaneously many a times it is required to lower the density of concrete enabling light weight which helps in easy handling of the concrete and its members. In this research an experimental endeavour has been made to equate conventional concrete with light weight by partially substituting the coarse aggregate with the pumice stone aggregate in M30 grade mix design. Simultaneously small fibres of Recron3's Polypropylene have been applied to the concrete as a reinforcing medium to minimize shrinkage cracking and improve tensile properties. The coarse aggregate was substituted by the pumice aggregate in 10, 20, 30, 40, and 50 percent and fibres respectively in 0.5, 1, 1.5, 2 and 2.5 percent. The experiment is focused on strength parameters to determine the most favourable optimum percent with respect to conventional concrete. Keywords: OPC (Ordinary Portland Cement)1, FA (Fine Aggregate)2, CA (Coarse Aggregate) 3, fck (Characteristic Compressive Strength at 28days)4, Sp. Gr (Specific Gravity)5, WC (Water Content)6, W/C (Water Cement Ratio)7, S (Standard Deviation)8, Fck (Target Average Compressive Strength at 28days)9.


Sign in / Sign up

Export Citation Format

Share Document