scholarly journals Vibration Analysis and Time Series Prediction for Wind Turbine Gearbox Prognostics

Author(s):  
Sajid Hussain ◽  
Hossam A. Gabbar

Multiple premature failures of a gearbox in a wind turbine pose a high risk of increasing the operational and maintenance costs and decreasing the profit margins. Prognostics and health management (PHM) techniques are widely used to assess the current health condition of the gearbox and project it in future to predict premature failures. This paper proposes such techniques for predicting gearbox health condition index extracted from the vibration signals. The progression of the monitoring index is predicted using two different prediction techniques, adaptive neuro-fuzzy inference system (ANFIS) and nonlinear autoregressive model with exogenous inputs (NARX). The proposed prediction techniques are evaluated through sun-spot data-set and applied on vibration based health related monitoring index calculated through psychoacoustic phenomenon. A comparison is given for their prediction accuracy. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating features, the level of damage/degradation, and their progression.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 998
Author(s):  
Roozbeh Sadeghian Broujeny ◽  
Kurosh Madani ◽  
Abdennasser Chebira ◽  
Veronique Amarger ◽  
Laurent Hurtard

Most already advanced developed heating control systems remain either in a prototype state (because of their relatively complex implementation requirements) or require very specific technologies not implementable in most existing buildings. On the other hand, the above-mentioned analysis has also pointed out that most smart building energy management systems deploy quite very basic heating control strategies limited to quite simplistic predesigned use-case scenarios. In the present paper, we propose a heating control strategy taking advantage of the overall identification of the living space by taking advantage of the consideration of the living space users’ presence as additional thermal sources. To handle this, an adaptive controller for the operation of heating transmitters on the basis of soft computing techniques by taking into account the diverse range of occupants in the heating chain is introduced. The strategy of the controller is constructed on a basis of the modeling heating dynamics of living spaces by considering occupants as an additional heating source. The proposed approach for modeling the heating dynamics of living spaces is on the basis of time series prediction by a multilayer perceptron neural network, and the controlling strategy regarding the heating controller takes advantage of a Fuzzy Inference System with the Takagi-Sugeno model. The proposed approach has been implemented for facing the dynamic heating conduct of a real five-floor building’s living spaces located at Senart Campus of University Paris-Est Créteil, taking into account the occupants of spaces in the control chain. The obtained results assessing the efficiency and adaptive functionality of the investigated fuzzy controller designed model-based approach are reported and discussed.


2021 ◽  
pp. 004051752110205
Author(s):  
Xueqing Zhao ◽  
Ke Fan ◽  
Xin Shi ◽  
Kaixuan Liu

Virtual reality is a technology that allows users to completely interact with a computer-simulated environment, and put on new clothes to check the effect without taking off their clothes. In this paper, a virtual fit evaluation of pants using the Adaptive Network Fuzzy Inference System (ANFIS), VFE-ANFIS for short, is proposed. There are two stages of the VFE-ANFIS: training and evaluation. In the first stage, we trained some key pressure parameters by using the VFE-ANFIS; these key pressure parameters were collected from real try-on and virtual try-on of pants by users. In the second stage, we evaluated the fit by using the trained VFE-ANFIS, in which some key pressure parameters of pants from a new user were determined and we output the evaluation results, fit or unfit. In addition, considering the small number of input samples, we used the 10-fold cross-validation method to divide the data set into a training set and a testing set; the test accuracy of the VFE-ANFIS was 94.69% ± 2.4%, and the experimental results show that our proposed VFE-ANFIS could be applied to the virtual fit evaluation of pants.


2013 ◽  
Vol 385-386 ◽  
pp. 1411-1414 ◽  
Author(s):  
Xue Bo Jin ◽  
Jiang Feng Wang ◽  
Hui Yan Zhang ◽  
Li Hong Cao

This paper describes an architecture of ANFIS (adaptive network based fuzzy inference system), to the prediction of chaotic time series, where the goal is to minimize the prediction error. We consider the stock data as the time series. This paper focuses on how the stock data affect the prediction performance. In the experiments we changed the number of data as input of the ANFIS model, the type of membership functions and the desired goal error, thereby increasing the complexity of the training.


2007 ◽  
Vol 4 (3) ◽  
pp. 1369-1406 ◽  
Author(s):  
M. Firat

Abstract. The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN), for forecasting of daily river flow is investigated and the Seyhan catchment, located in the south of Turkey, is chosen as a case study. Totally, 5114 daily river flow data are obtained from river flow gauges station of Üçtepe (1818) on Seyhan River between the years 1986 and 2000. The data set are divided into three subgroups, training, testing and verification. The training and testing data set include totally 5114 daily river flow data and the number of verification data points is 731. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN methods. The results of ANFIS, GRNN and FFNN models for both training and testing are evaluated and the best fit forecasting model structure and method is determined according to criteria of performance evaluation. The best fit model is also trained and tested by traditional statistical methods and the performances of all models are compared in order to get more effective evaluation. Moreover ANFIS, GRNN and FFNN models are also verified by verification data set including 731 daily river flow data at the time period 1998–2000 and the results of models are compared. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily River flow forecasting.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


Author(s):  
Ricky Mohanty ◽  
Subhendu Kumar Pani ◽  
Ahmad Taher Azar

The livestock health management system is based on the principal concept to investigate bird health status by collecting biological traits like their sound utterance. This theme is implemented on four different species of livestock to cure them of bronchitis disease. This paper includes the audio features of both healthy and unhealthy livestock. Particularly, the secure audio-wellbeing features are incorporated into the platform to spontaneously examine and conclude using livestock voice information to recognize diseased birds. One month of long-term recognition experimental studies has been conducted where the recognition accuracy of the set of diseased birds was about 99% using adaptive neuro-fuzzy inference system (ANFIS). This recognition accuracy of ANFIS in this regard is better than the performance of an artificial neural network. This is a reliable way for researchers to investigate and constitute evidence of disease curability or eradication of incurable ones.


Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. The O&M costs of wind turbines may easily reach up to 25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. Manufacturers and operators try to reduce O&M by developing new turbine designs and by adopting condition monitoring approaches. One of the most critical assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset's lifetime, according to the IEC 61400-4 standards but a recent study indicated that gearboxes might have to be replaced as early as 6.5 years. A plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault but often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy, on Negentropy, on Sparsity and on Statistics. The performance of the indicators is evaluated on a wind turbine data set with two different bearing faults. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.


Author(s):  
B. Samanta ◽  
C. Nataraj

A study is presented on applications of computational intelligence (CI) techniques for monitoring and prognostics of machinery conditions. The machine condition is assessed through an energy-based feature, termed as “energy index,” extracted from the vibration signals. The progression of the “monitoring index” is predicted using the CI techniques, namely, recursive neural network (RNN), adaptive neurofuzzy inference system (ANFIS), and support vector regression (SVR). The proposed procedures have been evaluated through benchmark data sets for one-step-ahead prediction. The prognostic effectiveness of the techniques has been illustrated through vibration data set of a helicopter drivetrain system gearbox. The prediction performance of SVR was better than RNN and ANFIS. The improved performance of SVR can be attributed to its inherently better generalization capability. The training time of SVR was substantially higher than RNN and ANFIS. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage or degradation, and their progression.


Sign in / Sign up

Export Citation Format

Share Document