INSIGHTS OF SHALE GAS EXPLORATION AND DEVELOPMENT IN INDIA: REVIEW

2021 ◽  
pp. 14-16
Author(s):  
Susheel Kumar

Encouraging results of shale gas production in different countries viz. USA, China and Australia, India is also inspired to explore shale gas resources, which may not only support meeting the growing energy demand but also assist to reduce the import of hydrocarbons. This paper aims to review the current status of shale gas exploration programs in various sedimentary basins in India for a better understanding of the prospect of shale gas. The signicant thickness of organic-rich shale deposits is reported in various Gondwana and Tertiary sedimentary basins including Damodar valley, Krishna-Godavari, Cauvery, Cambay, Assam-Arakan, Ganga and Vindhayan basins. The geochemical properties like TOC and thermal maturity, Organo-inorganic mineral compositions, pore-network system, and depth of shale deposits are favoring the potential prospect of shale gas in India. Several agencies namely EIA, ONGC, USGS, Schlumberger, and CMPDI reported enormous resources of shale gas in its various sedimentary basins.

Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 286-303
Author(s):  
Vuong Van Pham ◽  
Ebrahim Fathi ◽  
Fatemeh Belyadi

The success of machine learning (ML) techniques implemented in different industries heavily rely on operator expertise and domain knowledge, which is used in manually choosing an algorithm and setting up the specific algorithm parameters for a problem. Due to the manual nature of model selection and parameter tuning, it is impossible to quantify or evaluate the quality of this manual process, which in turn limits the ability to perform comparison studies between different algorithms. In this study, we propose a new hybrid approach for developing machine learning workflows to help automated algorithm selection and hyperparameter optimization. The proposed approach provides a robust, reproducible, and unbiased workflow that can be quantified and validated using different scoring metrics. We have used the most common workflows implemented in the application of artificial intelligence (AI) and ML in engineering problems including grid/random search, Bayesian search and optimization, genetic programming, and compared that with our new hybrid approach that includes the integration of Tree-based Pipeline Optimization Tool (TPOT) and Bayesian optimization. The performance of each workflow is quantified using different scoring metrics such as Pearson correlation (i.e., R2 correlation) and Mean Square Error (i.e., MSE). For this purpose, actual field data obtained from 1567 gas wells in Marcellus Shale, with 121 features from reservoir, drilling, completion, stimulation, and operation is tested using different proposed workflows. A proposed new hybrid workflow is then used to evaluate the type well used for evaluation of Marcellus shale gas production. In conclusion, our automated hybrid approach showed significant improvement in comparison to other proposed workflows using both scoring matrices. The new hybrid approach provides a practical tool that supports the automated model and hyperparameter selection, which is tested using real field data that can be implemented in solving different engineering problems using artificial intelligence and machine learning. The new hybrid model is tested in a real field and compared with conventional type wells developed by field engineers. It is found that the type well of the field is very close to P50 predictions of the field, which shows great success in the completion design of the field performed by field engineers. It also shows that the field average production could have been improved by 8% if shorter cluster spacing and higher proppant loading per cluster were used during the frac jobs.


2021 ◽  
Vol 35 (8) ◽  
pp. 6359-6379
Author(s):  
Chuanxiang Sun ◽  
Haikuan Nie ◽  
Wei Dang ◽  
Qian Chen ◽  
Guangrong Zhang ◽  
...  

2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


2021 ◽  
pp. 1-49
Author(s):  
Boling Pu ◽  
Dazhong Dong ◽  
Ning Xin-jun ◽  
Shufang Wang ◽  
Yuman Wang ◽  
...  

Producers have always been eager to know the reasons for the difference in the production of different shale gas wells. The Southern Sichuan Basin in China is one of the main production zones of Longmaxi shale gas, while the shale gas production is quite different in different shale gas wells. The Longmaxi formation was deposited in a deep water shelf that had poor circulation with the open ocean, and is composed of a variety of facies that are dominated by fine-grained (clay- to silt-size) particles with a varied organic matter distribution, causing heterogeneity of the shale gas concentration. According to the different mother debris and sedimentary environment, we recognized three general sedimentary subfacies and seven lithofacies on the basis of mineralogy, sedimentary texture and structures, biota and the logging response: (1) there are graptolite-rich shale facies, siliceous shale facies, calcareous shale facies, and a small amount of argillaceous limestone facies in the deep - water shelf in the Weiyuan area and graptolite-rich shale facies and carbonaceous shale facies in the Changning area; (2) there are argillaceous shale facies and argillaceous limestone facies in the semi - deep - water continental shelf of the Weiyuan area and silty shale facies in the Changning area; (3) argillaceous shale facies are mainly developed in the shallow muddy continental shelf in the Weiyuan area, while silty shale facies mainly developed in the shallow shelf in the Changning area. Judging from the biostratigraphy of graptolite, the sedimentary environment was different in different stages.


2021 ◽  
pp. 1-25
Author(s):  
Huijie Zhang ◽  
Shuhai Liu

Abstract The tribological properties of proppant particle sliding on shale rock determine the shale gas production. This work focuses on investigating the impacts of sliding speed on the coefficient of friction (COF) and wear of the silica ball-shale rock contact, which was lubricated by water or different types of polyacrylamide (PAM) aqueous or brine solution. The experimental results show that both boundary and mixed lubrication occur under specific speed and normal load. COF and wear depth of shale rock under water are higher than those under PAM solution due to superior lubrication of PAM. COF of shale rock under PAM brine solution increases and the wear of the rock is more serious, attributed to the corrosion of shale rock and adverse effect on lubrication of PAM by brine.


Sign in / Sign up

Export Citation Format

Share Document