scholarly journals OPTIMIZATION OF PROCESS CONDITIONS FOR ADSORPTION OF METHYLENE BLUE ON FORMALDEHYDE-MODIFIED PEANUT SHELLS USING BOX-BEHNKEN EXPERIMENTAL DESIGN AND RESPONSE SURFACE METHODOLOGY

2020 ◽  
pp. 131-142 ◽  
Author(s):  
Sinan KUTLUAY ◽  
Orhan BAYTAR ◽  
Ömer ŞAHİN ◽  
Ali ARRAN
Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yingpeng Tong ◽  
Yu Jiang ◽  
Dan Guo ◽  
Yongqiu Yan ◽  
Shiping Jiang ◽  
...  

Saffron, which has many kinds of biological activities, has been widely used in medicine, cosmetics, food, and other fields of health promotion industries. Crocins are the main component of saffron (Crocus sativus L.). At present, most of the extraction methods for crocins require long time or special instruments to complete the process and some of them are not suitable for industrial production at present. In this article, homogenate extraction technology which is a convenient and efficient method was developed for crocins extraction from saffron. Firstly, the influences of extraction voltage, extraction time, ethanol concentration, and temperature on crocins yield were studied by single factor experiments; and then response surface methodology (RSM) was used to optimize levels of four variables based on the result of single factor experiments. Results showed that the optimum extraction process conditions for crocins were as follows: extraction voltage, 110 V; ethanol concentration, 70%; extraction temperature, 57°C; and extraction time, 40 s. Based on these conditions, the extraction yield of crocins can reach 22.76% which is higher than ultrasonic extraction method. Therefore, homogenate extraction is an effective way to extract crocins from saffron with higher extraction yield and shorter extraction time.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Teresa Delgado ◽  
Bruna Paim ◽  
José Alberto Pereira ◽  
Susana Casal ◽  
Elsa Ramalhosa

Osmotic dehydration of chestnut slices in sucrose was optimized for the first time by Response Surface Methodology (RSM). Experiments were planned according to a three-factor central composite design (α=1.68), studying the influence of sucrose concentration, temperature and time, on the following parameters: volume ratio, water activity, color variation, weight reduction, solids gain, water loss and normalized moisture content, as well as total moisture, ash and fat contents. The experimental data was adequately fitted into second-order polynomial models with coefficients of determination (R2) from 0.716 to 0.976, adjusted-R2 values from 0.460 to 0.954, and non-significant lacks of fit. The optimal osmotic dehydration process conditions for maximum water loss and minimum solids gain and color variation were determined by the “Response Optimizer” option: 83% sucrose concentration, 20 °C and 9.2 hours. Thus, the best operational conditions corresponded to high sugar concentration and low temperature, improving energy saving and decreasing the process costs.


2018 ◽  
Vol 138 ◽  
pp. 849-860 ◽  
Author(s):  
Joana M. Pinheiro ◽  
Sérgio Salústio ◽  
Anabela A. Valente ◽  
Carlos M. Silva

2020 ◽  
Vol 998 ◽  
pp. 277-282
Author(s):  
Narissara Kulpreechanan ◽  
Feuangthit N. Sorasitthiyanukarn

Capsaicin (CAP) is a pungent alkaloid of chili peppers that is obtained from chili peppers that has a variety of pharmacological activities and can be used in various areas, such as functional foods, nutritional supplements and medical nutrition. Capsaicin has important anticancer, antioxidant and anti-inflammatory properties that allow to be applied as treatment for several diseases. However, its lack of water solubility, as well as its poor oral bioavailability in biological systems, show limiting factors for its successful application. Recently, the formulation of capsaicin for food and pharmaceutical use is limited. Therefore, the present study emphasized on preparation of capsaicin-loaded chitosan nanoparticles (CAP-CSNPs) and design and optimization of the formulation using Box-Behnken experimental design (BBD) and response surface methodology (RSM). The capsaicin-loaded chitosan nanoparticles were prepared by o/w emulsification and ionotropic gelification. The optimized formulation of capsaicin-loaded chitosan nanoparticles had a chitosan concentration of 0.11 (%w/v), a Tween 80® concentration of 1.55 (%w/v) and a CAP concentration of 1 mg/mL and that it should be stored at 4°C. Box-Behnken experimental design and response surface methodology was found to be a powerful technique for design and optimization of the preparation of capsaicin-loaded chitosan nanoparticles using limited number of experimental runs. Our study demonstrated that capsaicin-loaded chitosan nanoparticles can be potentially utilized as dietary supplements, nutraceuticals and functional foods.


Sign in / Sign up

Export Citation Format

Share Document