scholarly journals Radio Propagation Measurements and Cluster-Based Analysis for 5G Millimeter-Wave Cellular Systems in Dense Urban Environments

Author(s):  
Peize Zhang ◽  
Bensheng Yang ◽  
Haiming Wang ◽  
Cheng-Xiang Wang ◽  
Xiaohu You

Empirical channel modeling is necessary for the deployment of the fifth-generation (5G) millimeter-wave (mmWave) cellular system in actual environments. In this paper, cluster-based analyses of mmWave channel characteristics in two typical dense urban environments are performed. First, radio propagation measurement campaigns are conducted at two primary 5G bands of 28 GHz and 39 GHz in a central business district and a dense residential area. The custom-designed channel sounder supports high-efficiency directional scanning sounding, which helps to collect sufficient data for statistical channel modeling. Next, using an improved autoclustering algorithm, multipath clusters and their scattering sources are identified. Mapping results show that multiple reflections from exterior walls and diffraction over building corners or rooftops enhance the coverage for non-line-of-sight (NLoS) links and the influences of these propagation mechanisms are intuitively embodied as changes in the topologies of deployment environments. Finally, an appropriate measure for cluster-level channel characteristics is provided including cluster number, Ricean K-factor, root mean squared (RMS) delay spread, RMS angular spread, and their correlations. Comparisons of these parameters across two mmWave bands are also given. The measurement and modeling results shed light on a fully understanding of mmWave channels in dense urban environments across multiple bands.

2020 ◽  
Author(s):  
Peize Zhang ◽  
Bensheng Yang ◽  
Haiming Wang ◽  
Cheng-Xiang Wang ◽  
Xiaohu You

Empirical channel modeling is necessary for the deployment of the fifth-generation (5G) millimeter-wave (mmWave) cellular system in actual environments. In this paper, cluster-based analyses of mmWave channel characteristics in two typical dense urban environments are performed. First, radio propagation measurement campaigns are conducted at two primary 5G bands of 28 GHz and 39 GHz in a central business district and a dense residential area. The custom-designed channel sounder supports high-efficiency directional scanning sounding, which helps to collect sufficient data for statistical channel modeling. Next, using an improved autoclustering algorithm, multipath clusters and their scattering sources are identified. Mapping results show that multiple reflections from exterior walls and diffraction over building corners or rooftops enhance the coverage for non-line-of-sight (NLoS) links and the influences of these propagation mechanisms are intuitively embodied as changes in the topologies of deployment environments. Finally, an appropriate measure for cluster-level channel characteristics is provided including cluster number, Ricean K-factor, root mean squared (RMS) delay spread, RMS angular spread, and their correlations. Comparisons of these parameters across two mmWave bands are also given. The measurement and modeling results shed light on a fully understanding of mmWave channels in dense urban environments across multiple bands.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Jiao He ◽  
Er-Ping Li ◽  
Sai-Qiong Zhou ◽  
Kun Liao

The cellphone based localization system for search and rescue in complex high density ruins has attracted a great interest in recent years, where the radio channel characteristics are critical for design and development of such a system. This paper presents a spatial smoothing estimation via rotational invariance technique (SS-ESPRIT) for radio channel characterization of high density ruins. The radio propagations at three typical mobile communication bands (0.9, 1.8, and 2 GHz) are investigated in two different scenarios. Channel parameters, such as arrival time, delays, and complex amplitudes, are statistically analyzed. Furthermore, a channel simulator is built based on these statistics. By comparison analysis of average excess delay and delay spread, the validation results show a good agreement between the measurements and channel modeling results.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Irina Sirkova

AbstractThis work provides an introduction to one of the most widely used advanced methods for wave propagation modeling, the Parabolic Equation (PE) method, with emphasis on its application to tropospheric radio propagation in coastal and maritime regions. The assumptions of the derivation, the advantages and drawbacks of the PE, the numerical methods for solving it, and the boundary and initial conditions for its application to the tropospheric propagation problem are briefly discussed. More details are given for the split-step Fourier-transform (SSF) solution of the PE. The environmental input to the PE, the methods for tropospheric refractivity profiling, their accuracy, limitations, and the average refractivity modeling are also summarized. The reported results illustrate the application of finite element (FE) based and SSF-based solutions of the PE for one of the most difficult to treat propagation mechanisms, yet of great significance for the performance of radars and communications links working in coastal and maritime zones — the tropospheric ducting mechanism. Recent achievements, some unresolved issues and ongoing developments related to further improvements of the PE method application to the propagation channel modeling in sea environment are highlighted.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3626
Author(s):  
Fang Li ◽  
Wei Chen ◽  
Yishui Shui

The vehicle-to-vehicle (V2V) radio channel is non-stationary due to the rapid movement of vehicles. However, the stationarity of the V2V channels is an important indicator of the V2V channel characteristics. Therefore, we analyzed the non-stationarity of V2V radio channels using the local region of stationarity (LRS). We selected seven scenarios, including three directions of travel, i.e., in the same, vertical, and opposite directions, and different speeds and environments in a similar driving direction. The power delay profile (PDP) and LRS were estimated from the measured channel impulse responses. The results show that the most important influences on the stationary times are the direction and the speed of the vehicles. The average stationary times for driving in the same direction range from 0.3207 to 1.9419 s, the average stationary times for driving in the vertical direction are 0.0359–0.1348 s, and those for driving in the opposite direction are 0.0041–0.0103 s. These results are meaningful for the analysis of the statistical characteristics of the V2V channel, such as the delay spread and Doppler spread. Small-scale fading based on the stationary times affects the quality of signals transmitted in the V2V channel, including the information transmission rate and the information error code rate.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1653
Author(s):  
Ahmed Al-Saman ◽  
Michael Cheffena ◽  
Olakunle Elijah ◽  
Yousef A. Al-Gumaei ◽  
Sharul Kamal Abdul Rahim ◽  
...  

The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.


1985 ◽  
Author(s):  
M.R. Friscourt ◽  
P.A. Rolland ◽  
J.P. Duchemin ◽  
J. Lacombe

Sign in / Sign up

Export Citation Format

Share Document