scholarly journals Novel Multipath TCP Scheduling Design for Future IoT Applications

Author(s):  
Mohammed Yahya Asiri

<div>Today, mobile devices like smartphones are supported with various wireless radio interfaces including cellular (3G/4G/LTE) and Wi-Fi (IEEE 802.11) [46]. The legacy devices can only communicate with only one interface. The Transmission Control Protocol, or TCP, has a limitation inability to change connection settings without breaking the connection. Multi-path TCP (MPTCP) protocol has been proposed to solve TCP single-interface limitation and provides a huge improvement on application performance by using multiple paths transparently (auto path changing). The last mile is the final networking segment which carried all network traffic. The available bandwidth in last-mile link can effectively harm the network throughput as it limits the amount of transmitted data. The quality of the last mile networks significantly determines the reliability and quality of the carrying network. MPTCP can provide a convenient solution for the last mile problem. An MPTCP scheduler needs to provide significant packet routing schedules based on the current status of paths (sub-flows) in terms of loss rate, bandwidth and jitter, in a way, maximizing the network goodput. MPTCP extends the TCP by enabling a single byte stream split into multiple byte streams and transfer them over multiple disjoint network paths or subflows. An MPTCP connection combines a set of different subflows where each subflow performance depends on the condition of its path (including packet loss rate, queue delay, and throughput capacity). Unreliable packet scheduling may lead to critical networking issues such as the head-of-line (HoL) blocking where the packets scheduled on the low-latency path must wait for the packets on the high-latency path to ensure in-order delivery and the out-of-order (OFO) packets, the receiver must maintain a large queue to reorganize the received packets. In this project, we aim to study and experiment MPTCP scheduling on dynamic networks (like a cellular network) and try to propose an MPTCP schema which can be effective to overcome limitations of dynamic networks performance.</div>

2021 ◽  
Author(s):  
Mohammed Yahya Asiri

<div>Today, mobile devices like smartphones are supported with various wireless radio interfaces including cellular (3G/4G/LTE) and Wi-Fi (IEEE 802.11) [46]. The legacy devices can only communicate with only one interface. The Transmission Control Protocol, or TCP, has a limitation inability to change connection settings without breaking the connection. Multi-path TCP (MPTCP) protocol has been proposed to solve TCP single-interface limitation and provides a huge improvement on application performance by using multiple paths transparently (auto path changing). The last mile is the final networking segment which carried all network traffic. The available bandwidth in last-mile link can effectively harm the network throughput as it limits the amount of transmitted data. The quality of the last mile networks significantly determines the reliability and quality of the carrying network. MPTCP can provide a convenient solution for the last mile problem. An MPTCP scheduler needs to provide significant packet routing schedules based on the current status of paths (sub-flows) in terms of loss rate, bandwidth and jitter, in a way, maximizing the network goodput. MPTCP extends the TCP by enabling a single byte stream split into multiple byte streams and transfer them over multiple disjoint network paths or subflows. An MPTCP connection combines a set of different subflows where each subflow performance depends on the condition of its path (including packet loss rate, queue delay, and throughput capacity). Unreliable packet scheduling may lead to critical networking issues such as the head-of-line (HoL) blocking where the packets scheduled on the low-latency path must wait for the packets on the high-latency path to ensure in-order delivery and the out-of-order (OFO) packets, the receiver must maintain a large queue to reorganize the received packets. In this project, we aim to study and experiment MPTCP scheduling on dynamic networks (like a cellular network) and try to propose an MPTCP schema which can be effective to overcome limitations of dynamic networks performance.</div>


2021 ◽  
Author(s):  
Mohammed Yahya Asiri

Today, mobile devices like smartphones are supported with various wireless radio interfaces including cellular (3G/4G/LTE) and Wi-Fi (IEEE 802.11) [42]. The legacy devices can only communicate with only one interface. The Transmission Control Protocol, or TCP, has a limitation inability to change connection settings without breaking the connection. In this paper, we explain how multi-path TCP (MPTCP) protocol has been proposed to solve TCP single-interface limitation and provides a huge improvement on application performance by using multiple paths transparently (auto path changing). We discuss the last mile, which is the final networking segment that carried all network traffic. Indeed, the available bandwidth in last-mile link can effectively harm the network throughput as it limits the amount of transmitted data. We found that the quality of the last mile networks significantly determines the reliability and quality of the carrying network. We believe MPTCP can provide a convenient solution for the last mile problem. We provide a holistic view of the challenges and potential enablers in details.<br>


2021 ◽  
Author(s):  
Mohammed Yahya Asiri

Today, mobile devices like smartphones are supported with various wireless radio interfaces including cellular (3G/4G/LTE) and Wi-Fi (IEEE 802.11) [42]. The legacy devices can only communicate with only one interface. The Transmission Control Protocol, or TCP, has a limitation inability to change connection settings without breaking the connection. In this paper, we explain how multi-path TCP (MPTCP) protocol has been proposed to solve TCP single-interface limitation and provides a huge improvement on application performance by using multiple paths transparently (auto path changing). We discuss the last mile, which is the final networking segment that carried all network traffic. Indeed, the available bandwidth in last-mile link can effectively harm the network throughput as it limits the amount of transmitted data. We found that the quality of the last mile networks significantly determines the reliability and quality of the carrying network. We believe MPTCP can provide a convenient solution for the last mile problem. We provide a holistic view of the challenges and potential enablers in details.<br>


2021 ◽  
Author(s):  
Shiva Raj Pokhrel ◽  
Anwar Walid

Multipath TCP (MPTCP) has emerged as a facilitator for harnessing and pooling available bandwidth in wireless/wireline communication networks and in data centers. Existing implementations of MPTCP such as, Linked Increase Algorithm (LIA), Opportunistic LIA (OLIA) and BAlanced LInked Adaptation (BALIA) include separate algorithms for congestion control and packet scheduling, with pre-selected control parameters. We propose a Deep Q-Learning (DQL) based framework for joint congestion control and packet scheduling for MPTCP. At the heart of the solution is an intelligent agent for interface, learning and actuation, which learns from experience optimal congestion control and scheduling mechanism using DQL techniques with policy gradients. We provide a rigorous stability analysis of system dynamics which provides important practical design insights. In addition, the proposed DQL-MPTCPalgorithm utilizes the ‘recurrent neural network’ and integrates it with ‘long short-term memory’ for continuously i) learning dynamic behavior of subflows (paths) and ii) responding promptly to their behavior using prioritized experience replay. With extensive emulations, we show that the proposed DQL-based MPTCP algorithm outperforms MPTCP LIA, OLIA and BALIA algorithms. Moreover, the DQL-MPTCP algorithm is robust to time-varying network characteristics and provides dynamic exploration and exploitation of paths. The revised version is to appear in IEEE Trans. in Mobile Computing soon.<br>


2022 ◽  
Vol 54 (9) ◽  
pp. 1-33
Author(s):  
Josef Schmid ◽  
Alfred Höss ◽  
Björn W. Schuller

Network communication has become a part of everyday life, and the interconnection among devices and people will increase even more in the future. Nevertheless, prediction of Quality of Service parameters, particularly throughput, is quite a challenging task. In this survey, we provide an extensive insight into the literature on Transmission Control Protocol throughput prediction. The goal is to provide an overview of the used techniques and to elaborate on open aspects and white spots in this area. We assessed more than 35 approaches spanning from equation-based over various time smoothing to modern learning and location smoothing methods. In addition, different error functions for the evaluation of the approaches as well as publicly available recording tools and datasets are discussed. To conclude, we point out open challenges especially looking in the area of moving mobile network clients. The use of throughput prediction not only enables a more efficient use of the available bandwidth, the techniques shown in this work also result in more robust and stable communication.


Author(s):  
David Binet ◽  
Mohamed Boucadair ◽  
Christian Jacquenet ◽  
Denis Collange ◽  
Karine Guillouard ◽  
...  

The Transmission Control Protocol (TCP) is one of the core components of the TCP/IP protocol suite. It has been extensively used for the past three decades (and counting) as the privileged connection-oriented transport mode for many Internet applications, including access to web contents. Nevertheless, experience with TCP can sometimes be rather poor for various reasons which include (but are not limited to) sub-optimized forwarding path capabilities. Because a TCP session can only be established over a single path (by definition), this restriction is not only unable to take into account the dramatic evolution of terminal technologies towards multi-interfaced devices, but also the ability to benefit from several yet potential forwarding paths for the sake of improved Quality of Experience (QoE).


Author(s):  
Siti Amatullah Karimah ◽  
Fiqqih Maulana Susanto ◽  
Aji G. Putrada

Transmission Control Protocol (TCP) is a type of protocol that allows a collection of computers to communicate and exchange data within a network. Nowadays electronic devices such as tablets, personal computers and smartphones can use more than one network at the same time, but this is not supported by the characteristics of TCP which can only use one path on the network. To solve this condition there are several new generations of standardized network protocols. Multipath TCP is a development of TCP, Multipath which is a new generation network protocol that allows traffic to use multiple paths in the network. In addition to being able to use multiple paths on multipath TCP, there are several congestion control algorithms including LIA, CUBIC and WVEGAS congestion control algorithms. Tests conducted in this study were to compare the performance of congestion control LIA, CUBIC and WVEGAS to improve the quality of video streaming. From the test results, CUBIC is better than WVEGAS and LIA because the QoS and QoE video streaming test for CUBIC in all testing environment has better results than others.


2021 ◽  
Author(s):  
Shiva Raj Pokhrel ◽  
Anwar Walid

Multipath TCP (MPTCP) has emerged as a facilitator for harnessing and pooling available bandwidth in wireless/wireline communication networks and in data centers. Existing implementations of MPTCP such as, Linked Increase Algorithm (LIA), Opportunistic LIA (OLIA) and BAlanced LInked Adaptation (BALIA) include separate algorithms for congestion control and packet scheduling, with pre-selected control parameters. We propose a Deep Q-Learning (DQL) based framework for joint congestion control and packet scheduling for MPTCP. At the heart of the solution is an intelligent agent for interface, learning and actuation, which learns from experience optimal congestion control and scheduling mechanism using DQL techniques with policy gradients. We provide a rigorous stability analysis of system dynamics which provides important practical design insights. In addition, the proposed DQL-MPTCPalgorithm utilizes the ‘recurrent neural network’ and integrates it with ‘long short-term memory’ for continuously i) learning dynamic behavior of subflows (paths) and ii) responding promptly to their behavior using prioritized experience replay. With extensive emulations, we show that the proposed DQL-based MPTCP algorithm outperforms MPTCP LIA, OLIA and BALIA algorithms. Moreover, the DQL-MPTCP algorithm is robust to time-varying network characteristics and provides dynamic exploration and exploitation of paths. The revised version is to appear in IEEE Trans. in Mobile Computing soon.<br>


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Meda ◽  
C. Schaum ◽  
M. Wagner ◽  
P. Cornel ◽  
A. Durth

TIn 2004, the German Association for Wastewater, Water and Waste (DWA) carried out a survey about the current status of sewage sludge treatment and disposal in Germany. The study covered about one third of the wastewater treatment plants and about two thirds of the entire treatment capacity (expressed in population equivalents) in Germany. This provides an up-to-date and representative database. The paper presents the most important results regarding sludge treatment, process engineering, current disposal paths and sewage sludge quality.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Adele Brunetti ◽  
Francesca Macedonio ◽  
Giuseppe Barbieri ◽  
Enrico Drioli

Abstract The recent roadmap of SPIRE initiative includes the development of “new separation, extraction and pre-treatment technologies” as one of the “key actions” for boosting sustainability, enhancing the availability and quality of existing resources. Membrane condenser is an innovative technology that was recently investigated for the recovery of water vapor for waste gaseous streams, such as flue gas, biogas, cooling tower plumes, etc. Recently, it has been also proposed as pre-treatment unit for the reduction and control of contaminants in waste gaseous streams (SOx and NOx, VOCs, H2S, NH3, siloxanes, halides, particulates, organic pollutants). This perspective article reports recent progresses in the applications of the membrane condenser in the treatment of various gaseous streams for water recovery and contaminant control. After an overview of the operating principle, the membranes used, and the main results achieved, the work also proposes the role of this technology as pre-treatment stage to other separation technologies. The potentialities of the technology are also discussed aspiring to pave the way towards the development of an innovative technology where membrane condenser can cover a key role in redesigning the whole upgrading process.


Sign in / Sign up

Export Citation Format

Share Document