scholarly journals Communication Analysis through Visual Analytics: Current Practices, Challenges, and New Frontiers

Author(s):  
Maximilian T. Fischer ◽  
Frederik L. Dennig ◽  
Daniel Seebacher ◽  
Daniel A. Keim ◽  
Mennatallah El-Assady

<div>The automated analysis of digital human communication data often focuses on specific aspects like content or network structure in isolation, while classical communication research stresses the importance of a holistic analysis approach. This work aims to formalize digital communication analysis and investigate how classical results can be leveraged as part of visually interactive systems, which offers new analysis opportunities to allow for less biased, skewed, or incomplete results. For this, we construct a conceptual framework and design space based on the existing research landscape, technical considerations, and communication research that describes the properties, capabilities, and composition of such systems through 30 criteria in four analysis dimensions. We make the case how visual analytics principles are uniquely suited for a more holistic approach by tackling the automation complexity and leverage domain knowledge, paving the way to generate design guidelines for building such approaches. Our framework provides a common language and description of communication analysis systems to support existing research, highlights relevant design areas while promoting and supporting the mutual exchange between researchers. Additionally, our framework identifies existing gaps and highlights opportunities in research areas that are worth investigating further. With this contribution, we pave the path for the formalization of digital communication analysis through visual analytics.</div>

2021 ◽  
Author(s):  
Maximilian T. Fischer ◽  
Frederik L. Dennig ◽  
Daniel Seebacher ◽  
Daniel A. Keim ◽  
Mennatallah El-Assady

<div>The automated analysis of digital human communication data often focuses on specific aspects like content or network structure in isolation, while classical communication research stresses the importance of a holistic analysis approach. This work aims to formalize digital communication analysis and investigate how classical results can be leveraged as part of visually interactive systems, which offers new analysis opportunities to allow for less biased, skewed, or incomplete results. For this, we construct a conceptual framework and design space based on the existing research landscape, technical considerations, and communication research that describes the properties, capabilities, and composition of such systems through 30 criteria in four analysis dimensions. We make the case how visual analytics principles are uniquely suited for a more holistic approach by tackling the automation complexity and leverage domain knowledge, paving the way to generate design guidelines for building such approaches. Our framework provides a common language and description of communication analysis systems to support existing research, highlights relevant design areas while promoting and supporting the mutual exchange between researchers. Additionally, our framework identifies existing gaps and highlights opportunities in research areas that are worth investigating further. With this contribution, we pave the path for the formalization of digital communication analysis through visual analytics.</div>


1985 ◽  
Author(s):  
R. A. Scholtz ◽  
L. M. Silverman

2021 ◽  
pp. 000370282110345
Author(s):  
Tatu Rojalin ◽  
Dexter Antonio ◽  
Ambarish Kulkarni ◽  
Randy P. Carney

Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive label-free analysis of chemical and biological samples. While much recent work has established sophisticated automation routines using machine learning and related artificial intelligence methods, these efforts have largely focused on downstream processing (e.g., classification tasks) of previously collected data. While fully automated analysis pipelines are desirable, current progress is limited by cumbersome and manually intensive sample preparation and data collection steps. Specifically, a typical lab-scale SERS experiment requires the user to evaluate the quality and reliability of the measurement (i.e., the spectra) as the data are being collected. This need for expert user-intuition is a major bottleneck that limits applicability of SERS-based diagnostics for point-of-care clinical applications, where trained spectroscopists are likely unavailable. While application-agnostic numerical approaches (e.g., signal-to-noise thresholding) are useful, there is an urgent need to develop algorithms that leverage expert user intuition and domain knowledge to simplify and accelerate data collection steps. To address this challenge, in this work, we introduce a machine learning-assisted method at the acquisition stage. We tested six common algorithms to measure best performance in the context of spectral quality judgment. For adoption into future automation platforms, we developed an open-source python package tailored for rapid expert user annotation to train machine learning algorithms. We expect that this new approach to use machine learning to assist in data acquisition can serve as a useful building block for point-of-care SERS diagnostic platforms.


2016 ◽  
Author(s):  
Maia A. Smith ◽  
Cydney Nielsen ◽  
Fong Chun Chan ◽  
Andrew McPherson ◽  
Andrew Roth ◽  
...  

Inference of clonal dynamics and tumour evolution has fundamental importance in understanding the major clinical endpoints in cancer: development of treatment resistance, relapse and metastasis. DNA sequencing technology has made measuring clonal dynamics through mutation analysis accessible at scale, facilitating computational inference of informative patterns of interest. However, currently no tools allow for biomedical experts to meaningfully interact with the often complex and voluminous dataset to inject domain knowledge into the inference process. We developed an interactive, web-based visual analytics software suite called E-scape which supports dynamically linked, multi-faceted views of cancer evolution data. Developed using R and javascript d3.js libraries, the suite includes three tools: TimeScape and MapScape for visualizing population dynamics over time and space, respectively, and CellScape for visualizing evolution at single cell resolution. The tool suite integrates phylogenetic, clonal prevalence, mutation and imaging data to generate intuitive, dynamically linked views of data which update in real time as a function of user actions. The system supports visualization of both point mutation and copy number alterations, rendering how mutations distribute in clones in both bulk and single cell experiment data in multiple representations including phylogenies, heatmaps, growth trajectories, spatial distributions and mutation tables. E-scape is open source and is freely available to the community at large.


2019 ◽  
Author(s):  
Robert Krueger ◽  
Johanna Beyer ◽  
Won-Dong Jang ◽  
Nam Wook Kim ◽  
Artem Sokolov ◽  
...  

AbstractFacetto is a scalable visual analytics application that is used to discover single-cell phenotypes in high-dimensional multi-channel microscopy images of human tumors and tissues. Such images represent the cutting edge of digital histology and promise to revolutionize how diseases such as cancer are studied, diagnosed, and treated. Highly multiplexed tissue images are complex, comprising 109or more pixels, 60-plus channels, and millions of individual cells. This makes manual analysis challenging and error-prone. Existing automated approaches are also inadequate, in large part, because they are unable to effectively exploit the deep knowledge of human tissue biology available to anatomic pathologists. To overcome these challenges, Facetto enables a semi-automated analysis of cell types and states. It integrates unsupervised and supervised learning into the image and feature exploration process and offers tools for analytical provenance. Experts can cluster the data to discover new types of cancer and immune cells and use clustering results to train a convolutional neural network that classifies new cells accordingly. Likewise, the output of classifiers can be clustered to discover aggregate patterns and phenotype subsets. We also introduce a new hierarchical approach to keep track of analysis steps and data subsets created by users; this assists in the identification of cell types. Users can build phenotype trees and interact with the resulting hierarchical structures of both high-dimensional feature and image spaces. We report on use-cases in which domain scientists explore various large-scale fluorescence imaging datasets. We demonstrate how Facetto assists users in steering the clustering and classification process, inspecting analysis results, and gaining new scientific insights into cancer biology.


2020 ◽  
pp. 107769902096151
Author(s):  
Michael Chan ◽  
Panfeng Hu ◽  
Macau K. F. Mak

The number of studies employing mediation analysis has increased exponentially in the past two decades. Focusing on research design, this study examines 387 articles in the Journal of Communication, Human Communication Research, Communication Research, Journalism & Mass Communication Quarterly, and Media Psychology between 1996 and 2017. Findings show that while most studies report statistically significant indirect effects, they are inadequate to make causal inferences. Authors also often infer that they uncovered the “true” mediator(s) while alternative models and mediators are rarely acknowledged. Future studies should pay more attention to the role of research design and its implications for making causal inferences.


Sign in / Sign up

Export Citation Format

Share Document