scholarly journals A Word Communication System with Partner Assist for Amyotrophic Lateral Sclerosis Patients in Late Stages

Author(s):  
Kuniaki Ozawa ◽  
Masayoshi Naito, ◽  
Naoki Tanaka ◽  
Shiryu Wada

People with severe physical impairment such as amyotrophic lateral sclerosis (ALS) in a completely locked-in state (CLIS) suffer from inability to express their thoughts to others. To solve this problem, many brain-computer interface (BCI) systems have been developed, but they have not proven sufficient for CLIS. In this paper, we propose a word communication system: a BCI with partner assist, in which partners play an active role in helping patients express a word. We report here that five ALS patients in late stages (one in CLIS and four almost in CLIS) succeeded in expressing their own words (in Japanese) in response to wh-questions that could not be answered “yes/no.” Each subject sequentially selected vowels (maximum three) contained in the word that he or she wanted to express, by using a “yes/no” communication aid based on near-infrared spectroscopy. Then, a partner entered the selected vowels into a dictionary with vowel entries, which returned candidate words having those vowels. When there were no appropriate words, the partner changed one vowel and searched again or started over from the beginning. When an appropriate word was selected, it was confirmed by the subject via “yes/no” answers. Two subjects confirmed the selected word six times out of eight (credibility of 91.0% by a statistical measure); two subjects, including the one in CLIS, did so five times out of eight (74.6%); and one subject did so three times out of four (81.3%). We have thus taken the first step toward a practical word communication system for such patients.

2021 ◽  
Author(s):  
Kuniaki Ozawa ◽  
Masayoshi Naito, ◽  
Naoki Tanaka ◽  
Shiryu Wada

People with severe physical impairment such as amyotrophic lateral sclerosis (ALS) in a completely locked-in state (CLIS) suffer from inability to express their thoughts to others. To solve this problem, many brain-computer interface (BCI) systems have been developed, but they have not proven sufficient for CLIS. In this paper, we propose a word communication system: a BCI with partner assist, in which partners play an active role in helping patients express a word. We report here that five ALS patients in late stages (one in CLIS and four almost in CLIS) succeeded in expressing their own words (in Japanese) in response to wh-questions that could not be answered “yes/no.” Each subject sequentially selected vowels (maximum three) contained in the word that he or she wanted to express, by using a “yes/no” communication aid based on near-infrared spectroscopy. Then, a partner entered the selected vowels into a dictionary with vowel entries, which returned candidate words having those vowels. When there were no appropriate words, the partner changed one vowel and searched again or started over from the beginning. When an appropriate word was selected, it was confirmed by the subject via “yes/no” answers. Two subjects confirmed the selected word six times out of eight (credibility of 91.0% by a statistical measure); two subjects, including the one in CLIS, did so five times out of eight (74.6%); and one subject did so three times out of four (81.3%). We have thus taken the first step toward a practical word communication system for such patients.


2020 ◽  
pp. 10.1212/CPJ.0000000000000957
Author(s):  
Wesleigh F. Edwards ◽  
Sahana Malik ◽  
Jonathan Peters ◽  
Ivy Chippendale ◽  
John Ravits

AbstractPurposeof Review: Physician communication skills are a critical part of care for amyotrophic lateral sclerosis (ALS) patients and caregivers. They shape the development of autonomy and quality of life, and they mitigate emotional trauma. Communication skills are especially critical at two different time points in the course of disease: early when delivering and establishing the diagnosis, and later when clarifying goals of care.Recent Findings:Several techniques for physician communication of difficult information are available, including SPIKES, ABCDE, and BREAKS. These emphasize the physician’s accountability and responsibility for communicating effectively. Formal training in these techniques is limited and their applicability specifically to ALS is inexact.Summary:We propose an ALS-specific technique which we call ALS ALLOW to guide physicians in conducting difficult communications with ALS patients and caregivers to develop their understanding, establish autonomy, set goals, and mitigate emotional trauma. The techniques are useful in discussions both early and late stages in disease.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Jurate Lasiene ◽  
Koji Yamanaka

Amyotrophic lateral sclerosis (ALS) is an adult motor neuron disease characterized by premature death of upper and lower motor neurons. Two percent of ALS cases are caused by the dominant mutations in the gene for superoxide dismutase 1 (SOD1) through a gain of toxic property of mutant protein. Genetic and chimeric mice studies using SOD1 models indicate that non-neuronal cells play important roles in neurodegeneration through non-cell autonomous mechanism. We review the contribution of each glial cell type in ALS pathology from studies of the rodent models and ALS patients. Astrogliosis and microgliosis are not only considerable hallmarks of the disease, but the intensity of microglial activation is correlated with severity of motor neuron damage in human ALS. The impaired astrocytic functions such as clearance of extracellular glutamate and release of neurotrophic factors are implicated in disease. Further, the damage within astrocytes and microglia is involved in accelerated disease progression. Finally, other glial cells such as NG2 cells, oligodendrocytes and Schwann cells are under the investigation to determine their contribution in ALS. Accumulating knowledge of active role of glial cells in the disease should be carefully applied to understanding of the sporadic ALS and development of therapy targeted for glial cells.


2020 ◽  
Vol 17 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Si Chen ◽  
Qiao Liao ◽  
Ke Lu ◽  
Jinxia Zhou ◽  
Cao Huang ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurological disorder clinically characterized by motor system dysfunction, with intraneuronal accumulation of the TAR DNAbinding protein 43 (TDP-43) being a pathological hallmark. Riluzole is a primarily prescribed medicine for ALS patients, while its therapeutical efficacy appears limited. TDP-43 transgenic mice are existing animal models for mechanistic/translational research into ALS. Methods: We developed a transgenic rat model of ALS expressing a mutant human TDP-43 transgene (TDP-43M337V) and evaluated the therapeutic effect of Riluzole on this model. Relative to control, rats with TDP-43M337V expression promoted by the neurofilament heavy subunit (NEF) gene or specifically in motor neurons promoted by the choline acetyltransferase (ChAT) gene showed progressive worsening of mobility and grip strength, along with loss of motor neurons, microglial activation, and intraneuronal accumulation of TDP-43 and ubiquitin aggregations in the spinal cord. Results: Compared to vehicle control, intragastric administration of Riluzole (30 mg/kg/d) did not mitigate the behavioral deficits nor alter the neuropathologies in the transgenics. Conclusion: These findings indicate that transgenic rats recapitulate the basic neurological and neuropathological characteristics of human ALS, while Riluzole treatment can not halt the development of the behavioral and histopathological phenotypes in this new transgenic rodent model of ALS.


2021 ◽  
pp. 1-5
Author(s):  
João Morgadinho ◽  
Ana Catarina Pronto-Laborinho ◽  
Vasco A. Conceição ◽  
Marta Gromicho ◽  
Susana Pinto ◽  
...  

In amyotrophic lateral sclerosis (ALS) lower plasma creatinine level has been associated with shorter survival and faster functional decline. It has not been clear if creatinine is associated with respiratory outcome. We analyzed retrospectively a population of unselected ALS patients. Multiple-regression and Cox-regression analyses were performed. We included 233 patients, mean age 62.8, mean disease duration of 18.6 months. At baseline, creatinine was significantly associated with ALSFRS-R, but not with its decline rate. No predictive value was disclosed for FVC, or their decline rate, or with survival. We did not confirm that creatinine is a marker of respiratory outcome.


Author(s):  
Georgiana Soares Leandro ◽  
Mário Emílio Teixeira Dourado Júnior ◽  
Glauciane Costa Santana ◽  
Luan Samy Xavier Dantas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James C. Dodge ◽  
Jinlong Yu ◽  
S. Pablo Sardi ◽  
Lamya S. Shihabuddin

AbstractAberrant cholesterol homeostasis is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease that is due to motor neuron (MN) death. Cellular toxicity from excess cholesterol is averted when it is enzymatically oxidized to oxysterols and bile acids (BAs) to promote its removal. In contrast, the auto oxidation of excess cholesterol is often detrimental to cellular survival. Although oxidized metabolites of cholesterol are altered in the blood and CSF of ALS patients, it is unknown if increased cholesterol oxidation occurs in the SC during ALS, and if exposure to oxidized cholesterol metabolites affects human MN viability. Here, we show that in the SOD1G93A mouse model of ALS that several oxysterols, BAs and auto oxidized sterols are increased in the lumbar SC, plasma, and feces during disease. Similar changes in cholesterol oxidation were found in the cervical SC of sporadic ALS patients. Notably, auto-oxidized sterols, but not oxysterols and BAs, were toxic to iPSC derived human MNs. Thus, increased cholesterol oxidation is a manifestation of ALS and non-regulated sterol oxidation likely contributes to MN death. Developing therapeutic approaches to restore cholesterol homeostasis in the SC may lead to a treatment for ALS.


2021 ◽  
Vol 11 (7) ◽  
pp. 906
Author(s):  
Nimeshan Geevasinga ◽  
Mehdi Van den Bos ◽  
Parvathi Menon ◽  
Steve Vucic

Amyotrophic lateral sclerosis (ALS) is characterised by progressive dysfunction of the upper and lower motor neurons. The disease can evolve over time from focal limb or bulbar onset to involvement of other regions. There is some clinical heterogeneity in ALS with various phenotypes of the disease described, from primary lateral sclerosis, progressive muscular atrophy and flail arm/leg phenotypes. Whilst the majority of ALS patients are sporadic in nature, recent advances have highlighted genetic forms of the disease. Given the close relationship between ALS and frontotemporal dementia, the importance of cortical dysfunction has gained prominence. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological tool to explore the function of the motor cortex and thereby cortical excitability. In this review, we highlight the utility of TMS and explore cortical excitability in ALS diagnosis, pathogenesis and insights gained from genetic and variant forms of the disease.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1210
Author(s):  
Júlia Costa ◽  
Marta Gromicho ◽  
Ana Pronto-Laborinho ◽  
Conceição Almeida ◽  
Ricardo A. Gomes ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease that affects motor neurons controlling voluntary muscles. Survival is usually 2–5 years after onset, and death occurs due to respiratory failure. The identification of biomarkers would be very useful to help in disease diagnosis and for patient stratification based on, e.g., progression rate, with implications in therapeutic trials. Neurofilaments constitute already-promising markers for ALS and, recently, chitinases have emerged as novel marker targets for the disease. Here, we investigated cerebrospinal fluid (CSF) chitinases as potential markers for ALS. Chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1), chitinase-3-like protein 2 (CHI3L2) and the benchmark marker phosphoneurofilament heavy chain (pNFH) were quantified by an enzyme-linked immunosorbent assay (ELISA) from the CSF of 34 ALS patients and 24 control patients with other neurological diseases. CSF was also analyzed by UHPLC-mass spectrometry. All three chitinases, as well as pNFH, were found to correlate with disease progression rate. Furthermore, CHIT1 was elevated in ALS patients with high diagnostic performance, as was pNFH. On the other hand, CHIT1 correlated with forced vital capacity (FVC). The three chitinases correlated with pNFH, indicating a relation between degeneration and neuroinflammation. In conclusion, our results supported the value of CHIT1 as a diagnostic and progression rate biomarker, and its potential as respiratory function marker. The results opened novel perspectives to explore chitinases as biomarkers and their functional relevance in ALS.


Author(s):  
Fabiola De Marchi ◽  
◽  
Claudia Carrarini ◽  
Antonio De Martino ◽  
Luca Diamanti ◽  
...  

Abstract Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms. Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder. Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neurophysiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising non-invasive biomarkers to detect pre-clinical cognitive decline. Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral impairments of ALS patients.


Sign in / Sign up

Export Citation Format

Share Document