scholarly journals Development and application of the technique for identification of Borrelia miyamotoi surface antigens

2021 ◽  
Vol 98 (3) ◽  
pp. 339-350
Author(s):  
K. O. Mironov ◽  
A. V. Titkov ◽  
K. V. Kuleshov ◽  
N. M. Kolyasnikova ◽  
E. I. Bondarenko ◽  
...  

Introduction. Borrelia miyamotoi is a pathogen causing erythema-free ixodid tick-borne borreliosis (ITBB), a disease widespread in Russia. The genome of B. miyamotoi contains genes of multiple variable major proteins (Vmps). Vmps fall into two families — Vsps and Vlps (with subfamilies δ, γ, α and β). At a particular time, a single B. miyamotoi expresses only one variant of Vmp gene.The purpose of the work is to develop a technique for identification of the Vmp present at the expression site.Materials and methods. The technique is designed in the format of a real-time multiplex PCR. It was tested by using B. miyamotoi DNA samples extracted from blood collected from 172 ITBB patients and 109 ticks. The samples were collected in 14 regions of Russia.Results. The new technique made it possible to identify the expressed Vmp in 82% of the examined samples, thus having demonstrated its efficiency. Negative results were much less often observed with samples from patients than with samples from ticks. At the same time, the percentage of samples with one type of Vmp is identical for clinical samples and ticks, while the percentage of samples containing concurrently two types of Vmps is significantly higher among samples from patients with the most frequent occurrence of the Vlp-δ and Vsp combination.Discussion. The frequent occurrence of the combination of two Vmp types in the blood samples can indicate the concurrent presence of several subpopulations of B. miyamotoi in ITBB patients. A new antigenic Vmp variant is synthesized after protective antibodies have been produced for the major protein of the strain transmitted by a tick. This phenomenon known as immune evasion allows the pathogen to persist within a host.Conclusion. The developed technique of real-time multiplex PCR allows to simultaneous detect of several antigenic variants of the variable basic surface proteins of B. miyamotoi. The study of the antigenic spectrum of B. miyamotoi strains in comparison with the characteristics of conserved regions of the genome by the method of multilocus sequencing will clarify the stages of evolution and distribution of B. miyamotoi sensu lato.

Author(s):  
Paviter Kaur ◽  
N. S. Sharma ◽  
A. K. Arora ◽  
Deepti .

The present study was carried out to evaluate the conventional and molecular techniques for diagnosis of bovine brucellosis. A total of four isolates of Brucella abortus obtained from 100 clinical samples of foetal stomach contents, vaginal mucus and uterine discharges were characterized biochemically. The isolates were confirmed as Brucella spp. by PCR using B4/B5 primer pair and as B. abortus by Bruce Ladder multiplex PCR. By Hinic Real-time PCR, all the four isolates were confirmed as Brucella spp. with Ct values between 14-16. With DNA extracted from 40 clinical samples of foetal stomach contents, vaginal mucus and uterine discharges, Real time PCR appeared most sensitive of the three molecular and conventional techniques as it detected maximum number of positive samples.


COVID ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 5-17
Author(s):  
Tingting Liu ◽  
Lin Kang ◽  
Yanwei Li ◽  
Jing Huang ◽  
Zishuo Guo ◽  
...  

Human coronaviruses (HCoVs) are associated with a range of respiratory symptoms. The discovery of severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome, and SARS-CoV-2 pose a significant threat to human health. In this study, we developed a method (HCoV-MS) that combines multiplex PCR with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), to detect and differentiate seven HCoVs simultaneously. The HCoV-MS method had high specificity and sensitivity, with a 1–5 copies/reaction detection limit. To validate the HCoV-MS method, we tested 163 clinical samples, and the results showed good concordance with real-time PCR. Additionally, the detection sensitivity of HCoV-MS and real-time PCR was comparable. The HCoV-MS method is a sensitive assay, requiring only 1 μL of a sample. Moreover, it is a high-throughput method, allowing 384 samples to be processed simultaneously in 30 min. We propose that this method be used to complement real-time PCR for large-scale screening studies.


2020 ◽  
Vol 18 ◽  
Author(s):  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Conventional laboratory culture-based methods for diagnosis of Streptococcus pneumoniae are time-consuming and yield false negative results. Molecular methods including real-time (RT)-PCR rapid methods and conventional PCR due to higher sensitivity and accuracy have been replaced instead traditional culture assay. The aim of the current study was to evaluate lytA gene for detection of Streptococcus pneumoniae in the cerebrospinal fluid of human patients with meningitis using real-time PCR assay. Material and Methods: In this cross-sectional study, a total of 30 clinical specimens were collected from patients in a period from September to December 2018. In order to evaluate the presence of lytA gene, conventional and real-time PCR methods were used without culture. Results: From 30 sputum samples five (16.66%) isolates were identified as S. pneumoniae by lytA PCR and sequencing. Discussion: In this research, an accurate and rapid real-time PCR method was used, which is based on lytA gene for diagnosis of bacteria so that it can be diagnosed. Based on the sequencing results, the sensitivity for detection of lytA gene was 100% (5/5).


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Zhang ◽  
Chunyang Dai ◽  
Huiyan Wang ◽  
Yong Gao ◽  
Tuantuan Li ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30 to 60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient. Method In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients. Result The limit of detection (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI: 363.23–1145.69) for ORF1ab and 528.1 (95% CI: 347.7–1248.7) for N, 401.8 (95% CI: 284.8–938.3) for ORF1ab and 336.8 (95% CI: 244.6–792.5) for N, and 194.74 (95% CI: 139.7–430.9) for ORF1ab and 189.1 (95% CI: 130.9–433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively. Conclusion In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chukwunonso Onyilagha ◽  
Henna Mistry ◽  
Peter Marszal ◽  
Mathieu Pinette ◽  
Darwyn Kobasa ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples. The Biomeme SARS-CoV-2 assay, which simultaneously detects two viral targets, the orf1ab and S genes, and the Precision Biomonitoring TripleLock SARS-CoV-2 assay that targets the 5′ untranslated region (5′ UTR) and the envelope (E) gene of SARS-CoV-2 were highly sensitive and detected as low as 15 SARS-CoV-2 genome copies per reaction. In addition, the two assays were specific and showed no cross-reactivity with Middle Eastern respiratory syndrome coronavirus (MERS-CoV), infectious bronchitis virus (IBV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis (TGE) virus, and other common human respiratory viruses and bacterial pathogens. Also, both assays were highly reproducible across different operators and instruments. When used to test animal samples, both assays equally detected SARS-CoV-2 genetic materials in the swabs from SARS-CoV-2-infected hamsters. The M1 lysis buffer completely inactivated SARS-CoV-2 within 10 min at room temperature enabling safe handling of clinical samples. Collectively, these results show that the Biomeme and Precision Biomonitoring TripleLock SARS-CoV-2 mobile testing platforms could reliably and promptly detect SARS-CoV-2 in both human and animal clinical samples in approximately an hour and can be used in remote areas or health care settings not traditionally serviced by a microbiology laboratory.


2020 ◽  
Vol 7 (11) ◽  
Author(s):  
Gwynngelle A Borillo ◽  
Ron M Kagan ◽  
Russell E Baumann ◽  
Boris M Fainstein ◽  
Lamela Umaru ◽  
...  

Abstract Background Nucleic acid amplification testing is a critical tool for addressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Specimen pooling can increase throughput and conserve testing resources but requires validation to ensure that reduced sensitivity does not increase the false-negative rate. We evaluated the performance of a real-time reverse transcription polymerase chain reaction (RT-PCR) test authorized by the US Food and Drug Administration (FDA) for emergency use for pooled testing of upper respiratory specimens. Methods Positive specimens were selected from 3 prevalence groups, 1%–3%, >3%–6%, and >6%–10%. Positive percent agreement (PPA) was assessed by pooling single-positive specimens with 3 negative specimens; performance was assessed using Passing-Bablok regression. Additionally, we assessed the distributions of RT-PCR cycle threshold (Ct) values for 3091 positive specimens. Results PPA was 100% for the 101 pooled specimens. There was a linear relationship between Ct values for pooled and single-tested specimens (r = 0.96–0.99; slope ≈ 1). The mean pooled Ct shifts at 40 cycles were 2.38 and 1.90, respectively, for the N1 and N3 targets. The median Cts for 3091 positive specimens were 25.9 (N1) and 24.7 (N3). The percentage of positive specimens with Cts between 40 and the shifted Ct was 1.42% (N1) and 0.0% (N3). Conclusions Pooled and individual testing of specimens positive for SARS-CoV-2 demonstrated 100% agreement, which demonstrates the viability of pooled specimens for SARS-COV-2 testing using a dual-target RT-PCR system. Pooled specimen testing can help increase testing capacity for SARS-CoV-2 with a low risk of false-negative results.


Sign in / Sign up

Export Citation Format

Share Document