scholarly journals The role of antimicrobial therapy stewardship in intensive care service

2018 ◽  
Vol 20 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Vladimir A. Rudnov ◽  
G.B. Kolotova ◽  
Vladimir A. Bagin ◽  
N.N. Nevskaya ◽  
D.V. Belsky ◽  
...  

An analysis of current trends in the prevalence of nosocomial infections, their etiology and antibiotic resistance in pathogens was performed. Social and economic consequences of antimicrobial resistance as well as a medical community’s response were shown. A role of the AMRmap Internet resource in monitoring antibiotic resistance in Russia was demonstrated. The results of our own approaches to the antimicrobial therapy stewardship in the intensive care service of a large hospital were evaluated.

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 671
Author(s):  
Federica Giacometti ◽  
Hesamaddin Shirzad-Aski ◽  
Susana Ferreira

Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal–human–environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
S Bonetta ◽  
C Pignata ◽  
S a Bonetta ◽  
E Gasparro ◽  
E Lorenzi ◽  
...  

Abstract The global action plan on antimicrobial resistance reports the necessity to develop standards and guidance for the presence of antimicrobial agents in the environment, especially in wastewater, highlighting its possible role in the antibiotic resistance spreading. In addition, the New European One Health Action Plan against Antimicrobial Resistance underlines the need to support research into knowledge gaps on the release of resistant microorganisms into the environment and their dissemination. The aim of this study was to evaluate the presence of Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG) in wastewater treatment plants (WWTPs). At this scope, untreated sewage and treated effluents of three different WWTPs (A, B and C) were sampled for one year. Sample dilutions were plated on R2Agar added/not-added with 4 different antibiotics (ampicillin 32mg/L; tetracycline 16 mg/L; chloramphenicol 32 mg/L; sulfamethoxazole 50,4 mg/L) to evaluate the percentage of antibiotic resistant bacteria and their WWTPs removal rate (%). DNA extraction on the filter used to concentrate the wastewater samples was performed to reveal the ARG presence; subsequently specific PCRs for ARG (blaTEM, tetA, sul II, sul III) were carried out. ARB were detected in all samples analysed. The highest antibiotic resistance percentage was revealed in the sewage (mean 21,7%±4,8) and effluent (mean 21,1%±3,0) of the three wastewater treatment plants for sulfamethoxazole. Moreover, sul II was the most present gene in the samples (81% of all samples, 89 % of sewages and 72% of effluents). The lower WWTPs removal was recovered in the plant B for the tetracycline (95, 7%). The results obtained underlines the need to monitor WWTP as critical hot spot for the antibiotic resistance spreading also considering the One Health approach. Furthermore, the results obtained could suggest interventions to reduce the spread of the antibiotic resistance in the integrated urban water cycle. Key messages The information obtained could provide usefulness information about the role of wastewater treatment plant in the antibiotic resistance spreading. The results could contribute to suggest the interventions targeted to reduce the antibiotic resistance phenomenon in the integrated urban water cycle.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 398
Author(s):  
Paola Modesto ◽  
Chiara Grazia De Ciucis ◽  
Walter Vencia ◽  
Maria Concetta Pugliano ◽  
Walter Mignone ◽  
...  

Yersinia enterocolitica (Ye) is a very important zoonosis andwild boars play a pivotal role in its transmission. In the last decade, the wild boar population has undergone a strong increase that haspushed them towards urbanized areas, facilitating the human–wildlife interface and the spread of infectious diseases from wildlife to domestic animals and humans. Therefore, it is important to know the serotype, antimicrobial resistance and presence of pathogenicity genes of Yersinia enterocolitica (Ye) isolated in species. From 2013 to 2018, we analyzed the liver of 4890 wild boars hunted in Liguria region; we isolated and serotyped 126 Ye positive samples. A decisive role in the pathogenicity is given by the presence of virulence genes; in Ye isolated we found ystB (~70%), ymoA (45.2%), ail (43.6%) and ystA (~20%). Moreover, we evaluated the susceptibility at various antimicrobic agents (Ampicillin, Chloramphenicol, Enrofloxacin, Gentamicin, Kanamycin, Trimethoprim–Sulfamethoxazole, Sulfisoxazole, Ceftiofur and Tetracycline). The antibiotic resistance was analyzed, and we found a time-dependent increase. It is important to shed light on the role of the wild boars as a reserve of potentially dangerous diseases for humans, and also on the antibiotic resistance that represents a public health problem.


2018 ◽  
Vol 2 (1) ◽  

Background: The intensive care units are epicenters for the emergence of antibiotic resistant Gram-negative bacteria because of the high use of antibiotics, prolonged hospital stay, reduced patient immunity, use of medical devices, and the frequent contact between healthcare workers and patients. Surveillance of bacterial resistance is the key element to understand the size of the problem, drive interventions, and measures the effect of these measures. Several reports have linked the use of third generation cephalosporins with β-lactam resistance in gram-negative bacteria. Several strategies were introduced by the Antibiotic Stewardship Programs to reduce antibiotic resistance but the efficacies of these interventions are not well studied. Methods: The Microbiology Laboratory of Hamad Medical Corporation (HMC) monitors antimicrobial resistance by continuous surveillance using the National Committee for Clinical Laboratory Standards (NCCLS) - currently Clinical Laboratory Standards Institute interpretive criteria. Surveillance data were released annually and shared with clinicians and policy makers for review of the antibiotic policy and the antibiotic formulary. Results: Surveillance data in 2001 showed high level β-lactam antibiotics resistance and high level production of extended spectrum β-lactamases (ESBL) among gram-negative bacteria. As a result, the Hospital Antibiotic Policy Committee decided to withdraw ceftazidime a third –generation cephalosporin known to be a strong inducer of ESBL, from the hospital formulary. Subsequent resistance surveillance over the following three years in the Medical Intensive Care unit (MICU) demonstrated a gradual drop in the resistance of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli; the commonest isolated gram negative bacteria from MICU), not only to third and fourth generation cephalosporins, but also to Piperacillin – Tazobactam in spite of the increased use of the later drug in the MICU. Discussion and conclusion: Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. Since resistance development is an evolutionary process, constant surveillance is necessary to gain insight into the problem in a timely fashion. Several measures were taken including antibiotic cycling, antibiotic rotation and restriction. Restriction of the use of Ceftazidime resulted in a significant drop in the resistance of the common Gram-negative bacteria to the betalactam antibiotics. The sustainability and efficacy of these measures need to be monitored over time.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-3
Author(s):  
Sankar P

The prognosis of many diseases in the present circumstances is often dubious or uncertain. The reason for the present - day state is the consequences of reckless role of human mankind towards nature and irresponsible use antibiotics since when the antibiotics were discovered. The health of the human beings and livestock in the near future remains obscure If the same situation prevails. Hence, the decline in the effectiveness of antibiotics warrants the exploration of novel strategies and elements to combat the emerging antimicrobial resistance globally. Bacteriophages are one such alternate for antibiotics which can be commendably used in various fields like therapeutics, bio fe rmentation, food processing etc.


Author(s):  
Olexandra Kovalenko ◽  
Yaroslav Kizim ◽  
Natalia Voroshylova

Abstract. The analysis of modern literature data on the mechanisms of the formation of antibiotic resistance and the role of extracellular polymeric substance in biofilms, which are the main form of microbial existence. The role of extracellular polymeric substance in limiting of the effect of unfavorable factors as well as the regularity and necessity of its formation for the community of microorganisms were discussed. The position on the permanent character of phenotype dispersion of microorganisms is postulated. This dispersion doesn’t provide the formation of more resistant strains only, but plays the prominent role in the permanent formation of various forms, that aren’t viable under given conditions but play the role of a depot of building material for extracellular polymeric substance. The mass death of low-resistant forms caused by the action of the antibiotic ensures saturation of the extracellular polymeric substance by dechromatized DNA, that increases the resistance of the microbial socium and contributes to the further formation of multiresistance.


2015 ◽  
Vol 3 (3) ◽  
pp. 173-181
Author(s):  
Yezi Xerri ◽  
Mark N Evans

Viridans streptococci are a grouping of multiple streptococcal species which do not possess Lancefield antigens, are alpha-hemolytic, and result in infective endocarditis. Despite intensive care with antimicrobial therapy, the mortality has remained high for these infections and post infection squeal. All the pathways of complement system culminate in the formation of C3 convertase enzymes that mediate deposition of C3b on foreign surfaces. The goal of this study, to assay interferes between alkaline protease (AprA) of viridans streptococci and complement activation. Our data found that alkaline protease potently blocked phagocytosis of viridans streptococci by neutrophils the AprA specifically blocked C3b deposition via 2-pathways; the classical and lectin pathways. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. These results suggest a novel viridans streptococci mechanism, through AprA interferes with complement system pathway activation via cleavage of C2.


Sign in / Sign up

Export Citation Format

Share Document