scholarly journals Recombinant DNA technology as a tool for improving production of polyhydroxyalkanoates by the natural producers

2020 ◽  
Vol 19 (2) ◽  
pp. 124-137
Author(s):  
Daniela Chmelová ◽  
Barbora Legerská ◽  
Miroslav Ondrejovič

Polyhydroxyalkanoates (PHAs) are a group of the biodegradable polyesters, and represent an alternative to conventionally used petroleum-based plastics resistant to biodegradation. The production is not cost-competitive compared to conventional plastics, although, there are several bacterial producers capable of PHA accumulating up to 80 % of their cells dry weight using low-cost substrates. PHA production can be improved by transferring specific enzymes or entire metabolic pathways from the most efficient producers to other natural producers. Therefore, the review is focused on genetic modification of bacterial producers, namely the genera Cupriavidus, Pseudomonas, Halomonas, Aeromonas and Bacillus, for efficient industrial production of PHAs. Recombinant PHA producer can use non-traditional substrates like agro-industrial wastes, namely whey, lignocellulose or glycerol. It is possible to influence the shape and size of the producer's cell by over-expression or knockout of selected genes or to affect its preference for a specific component of a culture medium by modulation of a producer's basal metabolism. The costs of PHA production still be reduced by simplifying the downstream process by enzymatic hydrolysis of selected parts of the cell or blocking the protective mechanisms of the cell against its autolysis caused by the ionic strength of the solution.

2009 ◽  
Vol 4 (3) ◽  
pp. 89-96 ◽  
Author(s):  
M.C. Santimano ◽  
Nimali N. Prabhu ◽  
S. Garg

2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


2021 ◽  
Vol 11 (12) ◽  
pp. 5352
Author(s):  
Ana Margarida Pereira ◽  
Diana Gomes ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
...  

Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.


2021 ◽  
pp. 108058
Author(s):  
Talita Corrêa Nazareth ◽  
Conrado Planas Zanutto ◽  
Danielle Maass ◽  
Antônio Augusto Ulson de Souza ◽  
Selene Maria de Arruda Guelli Ulson de Souza

2020 ◽  
Vol 11 (1) ◽  
pp. 174
Author(s):  
Konstantinos P. Papadopoulos ◽  
Christina N. Economou ◽  
Athanasia G. Tekerlekopoulou ◽  
Dimitris V. Vayenas

Algal/cyanobacterial biofilm photobioreactors provide an alternative technology to conventional photosynthetic systems for wastewater treatment based on high biomass production and easy biomass harvesting at low cost. This study introduces a novel cyanobacteria-based biofilm photobioreactor and assesses its performance in post-treatment of brewery wastewater and biomass production. Two different supporting materials (glass/polyurethane) were tested to investigate the effect of surface hydrophobicity on biomass attachment and overall reactor performance. The reactor exhibited high removal efficiency (over 65%) of the wastewater’s pollutants (chemical oxygen demand, nitrate, nitrite, ammonium, orthophosphate, and total Kjeldahl nitrogen), while biomass per reactor surface reached 13.1 and 12.8 g·m−2 corresponding to 406 and 392 mg·L−1 for glass and polyurethane, respectively, after 15 days of cultivation. The hydrophilic glass surface favored initial biomass adhesion, although eventually both materials yielded complete biomass attachment, highlighting that cell-to-cell interactions are the dominant adhesion mechanism in mature biofilms. It was also found that the biofilm accumulated up to 61% of its dry weight in carbohydrates at the end of cultivation, thus making the produced biomass a suitable feedstock for bioethanol production.


2005 ◽  
Vol 48 (spe) ◽  
pp. 135-142 ◽  
Author(s):  
Adriano Aguiar Mendes ◽  
Heizir Ferreira de Castro

The objective of this work was to evaluate the replacement of Gum Arabic for sodium chloride to reduce fat and organic contents in dairy wastewater using two low cost commercially available lipase preparations from animal source (Kin Master - LKM and Nuclear- LNU). The best performance was achieved when lipase Nuclear (LNU) was used as catalyst. In addition, this lipase preparation has also lower cost, which makes its use a quite promising technique for reduction of suspended solids as proteins and lipids contents found in wastewater generated by dairy industries.


1992 ◽  
Vol 38 (Special) ◽  
pp. 263-266
Author(s):  
O. IFUKU ◽  
S. HAZE ◽  
J. KISHIMOTO ◽  
M. YANAGI

Sign in / Sign up

Export Citation Format

Share Document