scholarly journals QoS-aware Virtual Machine (VM) for Optimal Resource Utilization and Energy Conservation

Author(s):  
B. Vivekanandam

As cyber physical systems (CPS) has progressed, there are many applications which use CPS to connect with the physical world. Moreover the use of cloud in CPS revolutionizes the way in which information is stored and computed making it applicable to a wide range of applications. On the other hand, it also has questionable concerns over the energy consumed applications due to their explosive expansion. Hence in order to increase the efficiency of energy utilisation in the cloud environment, applications are hosted by virtual machines while resources are managed using virtualized Technology. However Quality of Service remains a challenge that is yet to be properly addressed. Hence a virtual machine scheduling algorithm which is aware of us is used to save energy in the designed CPS. The first step in a proposed work is to formulate the objective of the work. This is followed by using a genetic sorting algorithm to identify the apt Virtual Machine (VM) VM mitigation solution. MCDM (Multiple Criteria Decision Making) and SAW (Simple Additive Weighting) can also be used to pick the app scheduling strategy. Experimental and simulation results are observed and recorded based on which concrete conclusions are drawn.

2014 ◽  
Vol 1046 ◽  
pp. 508-511
Author(s):  
Jian Rong Zhu ◽  
Yi Zhuang ◽  
Jing Li ◽  
Wei Zhu

How to reduce energy consumption while improving utility of datacenter is one of the key technologies in the cloud computing environment. In this paper, we use energy consumption and utility of data center as objective functions to set up a virtual machine scheduling model based on multi-objective optimization VMSA-MOP, and design a virtual machine scheduling algorithm based on NSGA-2 to solve the model. Experimental results show that compared with other virtual machine scheduling algorithms, our algorithm can obtain relatively optimal scheduling results.


2014 ◽  
Vol 24 (3) ◽  
pp. 535-550 ◽  
Author(s):  
Jiaqi Zhao ◽  
Yousri Mhedheb ◽  
Jie Tao ◽  
Foued Jrad ◽  
Qinghuai Liu ◽  
...  

Abstract Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahfooz Alam ◽  
Mahak ◽  
Raza Abbas Haidri ◽  
Dileep Kumar Yadav

Purpose Cloud users can access services at anytime from anywhere in the world. On average, Google now processes more than 40,000 searches every second, which is approximately 3.5 billion searches per day. The diverse and vast amounts of data are generated with the development of next-generation information technologies such as cryptocurrency, internet of things and big data. To execute such applications, it is needed to design an efficient scheduling algorithm that considers the quality of service parameters like utilization, makespan and response time. Therefore, this paper aims to propose a novel Efficient Static Task Allocation (ESTA) algorithm, which optimizes average utilization. Design/methodology/approach Cloud computing provides resources such as virtual machine, network, storage, etc. over the internet. Cloud computing follows the pay-per-use billing model. To achieve efficient task allocation, scheduling algorithm problems should be interacted and tackled through efficient task distribution on the resources. The methodology of ESTA algorithm is based on minimum completion time approach. ESTA intelligently maps the batch of independent tasks (cloudlets) on heterogeneous virtual machines and optimizes their utilization in infrastructure as a service cloud computing. Findings To evaluate the performance of ESTA, the simulation study is compared with Min-Min, load balancing strategy with migration cost, Longest job in the fastest resource-shortest job in the fastest resource, sufferage, minimum completion time (MCT), minimum execution time and opportunistic load balancing on account of makespan, utilization and response time. Originality/value The simulation result reveals that the ESTA algorithm consistently superior performs under varying of batch independent of cloudlets and the number of virtual machines’ test conditions.


2018 ◽  
Vol 7 (1) ◽  
pp. 16-19
Author(s):  
Anupama Gupta ◽  
Kulveer Kaur ◽  
Rajvir Kaur

Cloud computing is the architecture in which cloudlets are executed by the virtual machines. The most applicable virtual machines are selected on the basis of execution time and failure rate. Due to virtual machine overloading, the execution time and energy consumption is increased at steady rate. In this paper, BFO technique is applied in which weight of each virtual machine is calculated and the virtual machine which has the maximum weight is selected on which cloudlet will be migrated. The performance of proposed algorithm is tested by implementing it in CloudSim and analyzing it in terms of execution time, energy consumption.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bo Li ◽  
Shiyang Liang ◽  
Linyu Tian ◽  
Daqing Chen ◽  
Ming Zhang

This paper presents a systematic work aiming to improve the efficiency of task processing in a networked UAV combat cloud system. The work consists of three major aspects: (1) an architecture of UAV combat cloud systems—such a system provides the necessary resource pool for powerful computing and storage facilities and defines the attributes of the entities in the resource pool in detail; (2) an online adaptive task redistribution and scheduling algorithm—the algorithm involves task migration being performed on virtual machines on the cloud system and aims to address the problems caused by static task scheduling approaches; and (3) an online virtual machine and task migration algorithm—the algorithm considers collectively the priority type and quantity of the tasks to be migrated on virtual machines along with time constraints to determine the migration of virtual machine or task and optimize resource usages. Experimental simulation results have demonstrated that the proposed system and the relevant algorithms can significantly improve the efficiency of task schedule.


Author(s):  
Kirankumar V. Kataraki ◽  
Sumana Maradithaya

Cloud computing is a platform that hosts various services and applications for users and businesses to access computing as a service. Cloud provider offers two distinct types of plans: reserved service and on-demand service. Cloud resources need to be allocated efficiently, and task needs to be scheduled efficiently such that the performance can be enhanced. In this research work, the authors have proposed a novel mechanism named PAMP (performance aware mechanism for parallel computation) for scheduling scientific workflows. At first, the resources are allocated using the optimal resource allocation mechanism. Then tasks are scheduled in parallel utilizing the task scheduling algorithm. Further, they consider energy and time as constrained to makespan optimization. The evaluation is carried out by considering the scientific workflows cyber snake with its different variant, and the comparative analysis is carried out by varying the number of virtual machines. The proposed methodology outperforms the existing model.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


Sign in / Sign up

Export Citation Format

Share Document